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Preface

This book is an introduction to the theory of nanostructures. Its main ob-
jectives are twofold: to provide basic concepts for the physics of nano-objects
and to review theoretical methods allowing the predictive simulation of nano-
devices. It covers many important features of nanostructures: electronic struc-
ture, dielectric properties, optical transitions and electronic transport. Each
topic is accompanied by a review of important experimental results in this
field. We have tried to make the book accessible to inexperienced readers
and it only requires basic knowledge in quantum mechanics and in solid state
physics. Whenever possible, each concept is introduced on the basis of simple
models giving rise to analytical results. But we also provide the reader with
the more elaborate theoretical tools required for simulations on computers.
Therefore, this book is intended not only for the students beginning in this
field but also for more experienced researchers.

The context of the book is the rapid expansion of nano-technologies re-
sulting from important research efforts in a wide range of disciplines such as
physics, biology and chemistry. If much work is presently focusing on the elab-
oration, the manipulation and the study of individual nano-objects, a major
challenge for nano-science is to assemble these objects to make new materials
and new devices, opening the door to new technologies. In this context, as the
systems become more and more complex, and because probing the matter at
the nanoscale remains a challenge, theory and simulation play an essential
role in the development of these technologies. A large number of simulation
tools are already available in science and technology but most of them are
not adapted to the nano-world because, at this scale, quantum mechanical
descriptions are usually necessary, and atomistic approaches become increas-
ingly important. Thus, one main objective of the book is to review recent
progress in this domain. We show that ab initio approaches provide accurate
methods to study small systems (<100-1000 atoms). New concepts allow us
to investigate these systems not only in their ground state, but also in their
excited states and out of equilibrium. The domain of application of ab initio
methods also becomes wider thanks to the decreasing size of the systems,
to the increasing power of the computers and to novel algorithms. But these
developments are by far not sufficient enough to cover all the needs, in partic-
ular when the number of atoms in the systems becomes large (2>100-1000).
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Thus, most of the problems in nano-science must be investigated using semi-
empirical approaches, and ab initio calculations are used to test or to calibrate
the semi-empirical methods in limiting cases. Therefore, an important part of
the book is devoted to semi-empirical approaches. In particular, we present
recent improvements which greatly enhance their predictive power.

Due to the huge existing literature in this field, we have limited our bib-
liography to what we believe are the most basic papers. It is also clear that
we have not covered all the aspects. For example, we have omitted nano-
magnetism which merits a book of its own.

The book is divided into eight chapters. Chapter 1 gives a general overview
of the basic theoretical methods which allow an understanding of the elec-
tronic properties from condensed matter to molecules and atoms. We present
ab initio descriptions of the electronic systems in their ground state, in par-
ticular those based on the density functional theory, and we review recent ap-
proaches dealing with one-particle and two-particle excitations. Then, semi-
empirical methods are introduced, from the simple effective mass approach
to more elaborate theories such as tight binding and pseudopotential meth-
ods. Chapter 2 provides a general introduction to quantum confined semi-
conductor systems, from two to zero dimensions. We compare different com-
putational techniques and we discuss their advantages and their limits. The
theoretical predictions for quantum confinement effects are reviewed.

Chapter 3 deals with the dielectric properties of nano-objects. Microscopic
methods based on electronic structure calculations are presented. Screening
properties in semiconductor nanostructures are analyzed using both macro-
scopic and microscopic approaches. The concept of local dielectric constant is
introduced and we conclude by discussing the possibility of using the macro-
scopic theory of dielectrics in nano-systems. We also point out the importance
of surface polarization charges at dielectric interfaces for Coulomb interac-
tions in nanostructures.

In Chapter 4, we focus on the description of quasi-particles and excitons,
starting from the simpler methods based on the effective mass theory and
progressing to more complex approaches treating dynamic electronic correla-
tions. Chapter 5 discusses the optical properties of nanostructures. It begins
with the basic theory of the optical transitions, concentrating on problems
specific to nano-objects and including the influence of the electron-phonon
coupling on the optical line-shape. The optical properties of semiconductor
nanocrystals are then reviewed, both for interband and intraband transitions.
Chapter 6 is devoted to hydrogenic impurities and point defects in nanostruc-
tures. In view of the importance of surfaces in small systems, surface dan-
gling bond defects are discussed in detail. The chapter closes with study of
self-trapped excitons showing that their existence is favored by confinement
effects.

Non-radiative processes and relaxation mechanisms are considered in
Chap. 7. The effect of the quantum confinement on the multi-phonon cap-
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ture on point defects is studied. We present theoretical formulations of the
Auger recombination in nanostructures and we discuss the importance of
this mechanism by reviewing the experimental evidence. Then we address
the problem of the relaxation of hot carriers in zero-dimensional objects.
In strongly confined systems, phonon-assisted relaxation is slow due to the
phonon bottleneck effect, but we explain why this effect is difficult to observe
due to competitive relaxation mechanisms.

Chapter 8 discusses non-equilibrium transport in nanostructures. We in-
troduce theoretical methods used to simulate current—voltage characteristics.
We start with the regime of weak coupling between the nano-device and
the electron leads, introducing the so-called orthodox theory. Situations of
stronger coupling are investigated using the scattering theory in the indepen-
dent particle approximation. Electron—electron interactions are then consid-
ered in mean-field approaches. The limits of these methods are analyzed at
the end of the chapter.

Finally, we are greatly indebted to G. Allan for a long and fruitful col-
laboration. We are grateful to all our colleagues and students for discussions
and for their contributions. We acknowledge support from the “Centre Na-
tional de la Recherche Scientifique” (CNRS) and from the “Institut Supérieur
d’Electronique et du Numérique” (ISEN).

Lille, Paris, C. Delerue
December 2003 M. Lannoo
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1 General Basis for Computations
and Theoretical Models

This chapter describes theoretical concepts and tools used to calculate the
electronic structure of materials. We first present ab initio methods which
are able to describe the systems in their ground state, in particular those
based on the density functional theory. Introducing the concept of quasi-
particles, we show that excitations in the systems can be accurately described
as excitations of single particles provided that electron—electron interactions
are renormalized by the coupling to long-range electronic oscillations, i.e. to
plasmons. We then review the main semi-empirical methods used to study
the electronic structure of nanostructures.

1.1 Ab initio One-Particle Theories
for the Ground State

This section is an attempt to summarize the basic methods which have al-
lowed an understanding of a wide range of electronic properties not only in
condensed matter but also in molecules. The basic difficulty is due to the
inter-electronic repulsions which prevent from finding any tractable solution
to the general N electron problem. One is then bound to find approximate
solutions. Historically most of these have tried to reduce this problem to a
set of one-particle Schréodinger equations. Of course such a procedure is not
exact and one must find the best one-particle wave functions via a minimiza-
tion procedure based on the variational principle. This one is however valid
for the ground state of the system and can only be applied exceptionally to
excited states for which the total wave function is orthogonal to the ground
state.

The general solution of the N electron system must be antisymmetric
under all permutations of pairs of electron coordinates. We start by applying
the constraint to the case of N non interacting electrons. We review on that
basis the Hartree and Hartree-Fock approximations and give a qualitative
discussion of correlation effects. We then pay special attention to the so-
called density functional theories of which the most popular one is the local
density approximation (LDA). These have the advantage of leading to a set
of well-defined one-particle equations, much simpler to solve than in Hartree—
Fock theory, and to provide at the same time fairly accurate predictions for
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the ground state properties. We end up this section with a discussion of the
meaning and accuracy of the one-particle eigenvalues for the prediction of
excitation energies.

1.1.1 Non-interacting N Electron System

We start by discussing a hypothetical system of independent electrons for
which the Hamiltonian can be written

N
H= Zh(a:,;), (1.1)

where x; contains both space and spin coordinates (z; = 7;,£). Each indi-
vidual Hamiltonian h(x;) is identical and has the same set of solutions:

h(x)ug(x) = epur(x) . (1.2)

For such a simple situation the eigenstate 1) of H with energy E can be
obtained as a simple product of one-electron states (also called spin—orbitals)

N
w = H uk(a:k) s (13)
k=1

its energy being obtained as the sum of the corresponding eigenvalues:

=Y. (14)
k=1

Although these solutions are mathematically exact they are not accept-
able for the N electron system since ¢ given by (1.3) is not antisymmetric.
The way to solve this difficulty is to realize that any other simple product 1,
obtained from 4 by a simple permutation of x and @; has the same energy
E and is thus degenerate with 1. The problem is thus to find the linear com-
bination ¥ag of ¢ and all v that is antisymmetric under all permutation
x; <> x;. This turns out to be a determinant called the Slater determinant
defined by:

U1E$1§ U1EIBN§

1 U\ L1 U2 TN

Yas = JN : (1.5)
uN(a:l) UN(:IZN)

This determinant still has the energy given by (1.4). The ground state of
the system is thus obtained by choosing for ¢¥ag the N one-particle states u;
which have the lowest eigenvalues £;. However in doing this one must take
care of the fact that the Slater determinant as vanishes when two u; are
taken identical. This is the Pauli exclusion principle according to which two
electrons cannot be in the same quantum state. If A(x) is spin independent
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the spin orbitals can be factorized as a product of a space part ug(r) and a
spin part x4 (£)

ugo (2) = ug(r)xo(§) , (1.6)

where r is the position vector, £ the spin variable and ¢ =% or |. In such a case
the Pauli principle states that two electrons can be in the same orbital state
if they have opposite spin. The ground state of the system is thus obtained
by filling all lowest one-electron states with two electrons with opposite spin
per state.

1.1.2 The Hartree Approximation

The full Hamiltonian of the interacting N electron system is

1

H = Zh(.’l:k) + EZU(Tk’Tk,)+VNN , (1.7)
k Ek/

where the one-electron part h is the sum of the kinetic energy and the

Coulomb interaction with the nuclei, v is the electron—electron interaction

e2

v(rg, rE) = (1.8)

|’I‘1C — Tk/| ’
and Vyn is the Coulomb energy due to the interaction between the nuclei
(throughout this chapter we use electrostatic units, i.e. 4meg = 1). It is of
course the existence of the terms (1.8) which prevents from factorizing H
and getting a simple solution as in the case of independent electrons. A first
step towards an approximate solution to this complex problem came from
the intuitive idea of Hartree [1-3] who considered that each electron could
be treated separately as moving in the field of the nuclei plus the average
electrostatic field due to the other electrons. This corresponds to writing an
individual Schrédinger equation

h(.’l:k) + Z /U(rk,rk/)|uk/(mk1)|2dxk« uk(wk) = skuk(mk) (1.9)
k#k’

for each of the IV electrons of the system. To connect with the following we
rewrite this equation in a more standard form

[h(z) + Vu(z) — 23 ()] un(z) = cpun() (1.10)

which is obtained by adding and subtracting the term k& = ¥’ in (1.9). Vi(x)
is the so-called Hartree potential, i.e. the electrostatic potential due to the
total density n(zx) (including the term k = £'):

Va(z) = /U(r,r’)n(w’)dm',
n(x) =Y nilw(z)’ . (1.11)
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The n; introduced in the definition of n(x) are the occupation numbers,
n; = 1 if there is an electron in u;, n; = 0 in the opposite case. The last term
ZEI is the self-interaction correction, removing the unphysical term k = k'
introduced in the definition of Vi:

ool(z) = /v(r,'r")|uk(m')|2dw’ . (1.12)

The Hartree equations coupled with a spherical averaging of the potential
in (1.10) have provided a quite accurate picture of the electronic structure
of isolated atoms. They are a basis for understanding the periodic table of
the elements and also produce good electron densities n(x) as compared with
those obtained experimentally from X-ray scattering.

The Hartree equations have been put on firm theoretical grounds by use
of the variational principle [2,4]. For this one takes as trial wave function
the simplest form one can obtain for independent electrons, without taking
account of the antisymmetry. This one is thus the simple product of spin
orbitals given by (1.3). The optimized ¥ belonging to this family of wave
functions must minimize the energy given by the expectation value of H for
this wave function. This is equivalent to solving

(0yY|E - H|p) =0, (1.13)

where §¢ is an infinitesimally small variation of 3. If one now varies each
uy, separately in (1.13) by duy one directly gets the set of equations (1.9) or
(1.10).

The Hartree method then succeeds in reducing approximately the N elec-
tron problem to a set of N one-particle equations. However the price to pay is
that the potential energy in each equation (1.10,1.11) contains the unknown
quantity n(z') — |ug(z’)|>. One must then solve these equations iteratively
introducing at the start some guess functions for the |ug|? in the potential
energy, solve the equations, re-inject the solutions for the |ux|? (or some
weighted averages) into the potential energy and so on (Fig. 1.1). The pro-

.
1 Density —® Potential
. S
s N Fig. 1.1. The electron den-
sity and the potential must
. Schrodi i .
Density <s— chrocinger equa tl,on - be calculated self-consistently
Equilibrium statistics o
taking into account the occu-

. J pation of the levels
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cedure stops when self-consistency, i.e. the identity between the input and
output, is achieved.

1.1.3 The Hartree—Fock Approximation

This is less intuitive than the Hartree method and must be directly intro-
duced from a variational treatment. The starting point is similar except that
instead of choosing for 1 a simple product function one now makes use of
Slater determinant of the form (1.5) in which the spin orbitals are assumed
orthonormal. The total energy E = (y|H|¢) of such a determinant can be
shown [2, 3,5, 6] to be given by

E=Y ni(klhlk) + % S mena({RlJolkl) — (KIJolIk)) + Vi (1.14)
k k,l
with:
(lhlE) = / ()b () des

(ijlv|kl) = /uf(m)u;(az')v(r,r')uk(m)ul(m’)dmdm’. (1.15)

We want to minimize F with respect to the u; under the constraint that
these remain orthonormal, i.e. [u}(x)u(x)de = 0. This can be achieved
via the method of Lagrange multipliers. If we apply a first order change duj
this requires that the quantity 6E— Y, Awi [ 0uj(z)ui(x)da = 0, Vouy. This
leads to the set of one-particle equations:

h(x) +Zm/v(r,r’)|ul(w')l2dw’] ug(x)
_ an [/v(r,r’)uz*(a:')uk(m’)da:’] w(z) = Z)\klul(m) . (1.16)
1 !

This can be simplified by noticing that a unitary transformation applied
to the Slater determinant does not modify it apart from a phase factor and
thus does not change the structure of the equations. It is thus possible to
rewrite (1.16) under diagonal from, i.e. with:

Akt = €Okt - (1.17)

For obvious reasons, the last term on the left hand side of (1.16) is called
the exchange term, the second one being the Hartree potential V. We now
rewrite (1.16) using (1.17) under a form which will be generalized in the
following:

[h(x) + V(@) uk(x) +/Z‘x(w,m')uk(w’)dm' = gpu(x) , (1.18)
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X, corresponding to the non-local exchange potential:

Yo(z,x') = —v(r, ') anul(w)u}"(m’) . (1.19)
1

The ! = k term in (1.19) when injected into (1.18) directly corresponds
to the self-interaction Z%! of (1.12). The Hartree-Fock (HF) procedure thus
reproduces the Hartree equations plus corrective exchange terms for | # k.

When the spin orbitals are factorized as in (1.6) one can perform the
integration over the spin variables directly in the HF equations. In that case
the result is that the integrations over ' can be replaced by integrations over
7' at the condition of multiplying Vg by a factor 2 for spin degeneracy while
the exchange term remains unchanged since opposite spins give a vanishing
contribution to (1.16).

While the HF approximation improves over the Hartree one, especially
for magnetic properties, it does not provide an accurate enough technique for
the ground state properties as well as the excitation energies. This is due to
correlation effects which are important in both cases as will be discussed in
the following. Furthermore HF leads to heavy calculations due to the non-
local character of the exchange term.

1.1.4 Correlations and Exchange—Correlation Hole

By definition correlation effects are the contributions not included in the HF
approximation. Conceptually the simplest way to include them is to use the
method of configuration interaction (CI). The principle of the CT technique is
to expand the eigenstates of the interacting N electron system on the basis of
the Slater determinants built from an infinite set of orthonormal one-particle
spin orbitals :

¥ = cnthspn - (1.20)

Quite naturally the starting point in such an expansion could be the
ground state HF determinant, the others being built by substitution of excited
HF spin orbitals. However the CI technique is quite heavy and does not
converge rapidly so that it can be applied only to small molecules (typically
10 atoms maximum). This means that it cannot be applied to solids. We thus
now discuss the only case where practically exact results have been obtained
for infinite systems, i.e. the free electron gas.

The free electron gas is an idealized model of simple metals in which the
nuclear charges are smeared out to produce a uniform positive background
charge density. This one is fully compensated by the uniform neutralizing
electron density. This produces a constant zero potential in all space. The
solutions of the one-particle Hartree equations are
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1 .
ug(r) = _\/‘_/_elk.r :
£ = Ll |k|? (1.21)
5= oma ) .

where V' is the volume of the system and myg is the electron mass.

In the ground state, these one-particle states are filled with two electrons
of opposite spin up to the Fermi level ep = h2k2/(2mq) where kF is the Fermi
momentum. One can then express the electron density n as:

_ ki
=33
In this context it has been customary to express all quantities in terms of
the radius 7 per electron defined by 47r3/3 = 1/n. We can thus write:

(1.22)

krp = (ars)fl ,

4\3
= — =0.521. 1.23
a=(5) (123)

Looking first at the HF correction defined by (1.18,1.19) one can show
that plane waves are eigenstates of the HF operator, i.e.:

/Ex(r,r')uk(r’)d'r" = () krur(r) ,

4re? 1
Bk = ==~ > ng TWE (1.24)
k/

We now determine the average exchange energy per electron £, by sum-
ming (Xx)k,k over the filled states, divide by the number N of electrons and
by a factor 2 for the interactions counted twice. This gives [6,7] (in atomic
units):

3e? 0.458

EX = — =
drarg Ts

(1.25)

A lot of studies have been devoted to the calculation of the correlation
energy ¢ of the electron gas. These are summarized in many reviews, e.g.
[6,7]. These analytical studies have been confirmed by the more accurate
Quantum Monte Carlo calculations [8] which now serve as a basis in local
density studies as discussed in the following (Sect. 1.1.5).

It is of interest to try to understand these effects in terms of the exchange-
correlation hole. We start by analyzing the HF case in the manner of Slater,
i.e. rewrite the exchange term of (1.18, 1.19) as:

/Ex(x,a:’)uk(w’)daz’
_ {fv(r,r’) 2o (w)uy (& )up (') da’ } we() . (1.26)

uk(:v)
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The term in brackets on the right hand side of (1.26) is the one-body effec-
tive exchange potential Viyr(@) acting on the one-particle eigenstate ux(x).
It can be considered as the electrostatic potential induced by the density

nie(z,a’) = 3 nzuz(w):i‘ ((;t;)w(w’) (1.27)
i

which, when integrated over &, gives unity. This corresponds to the fact
that, in the N electron system, the electron at = interacts with N — 1 other
electrons, i.e. with the NV electrons contained in the Hartree term Vy plus
one hole called the exchange hole. The question now arises of the localization
of this hole around the electron in question. The answer comes from the
behavior of the quantity Y, njw(x)u; (x’). If the n; were unity for all [ then
it would amount to §(x — '), i.e. strictly localized on the electron. As this is
not the case it looks like a broadened delta function. For the free electron gas
its width is of order Ap = 27/kp = 3r; which means that, for alkali metals,
it extends just beyond the nearest neighbors sphere. Such a conclusion holds
true quite generally and can be also understood from the fact that the Slater
determinant prevents two electrons with the same spin from being at the
same position.

Turning now to correlation effects we can examine them in a simple clas-
sical way which will be developed in the section on the GW approximation
(Sect. 1.2.4). In the Hartree and HF treatments one electron at r experiences
the average field due to the other electrons. However, due to the electron—
electron repulsion, its presence at r modifies the distribution of the other
electrons creating around it a Coulomb hole which results in a screening of
the electron—electron interactions and a lowering of the total energy (Fig.
1.2). It is important for the following to notice that, for a finite metallic sys-
tem, this Coulomb hole completely compensates the electron charge locally,
the screening charge being repelled on the surface. Thus the total charge in
the Coulomb hole always amounts to zero. We shall see later that this is of
primary importance for nanostructures.

To end up the considerations on the exchange—correlation hole we now give
some exact results, discussed for instance in [7,9,10]. We start by defining

Fig. 1.2. The exchange—correlation hole
around an electron leads to a screening of the
electron—electron interactions
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the electron density n(r) as the probability per unit volume of finding one
electron at r or equivalently
¢> ) (1.28)

N
r) = <w Zé(r )

where r; are the electron positions and |¢) is the N-particle wave function
of the ground state. In the same spirit we define the pair correlation function
n(r, '} as the squared probability per unit volume to find one electron at r
and another one at 7’

n{r,r') = <1/) Zé(r —r)0(r' —7r;) 1/1> , (1.29)

i#]

which obviously contains information about inter-electronic correlations. In
particular the exact Coulomb energy of the system

Veoul = < Zm_r]' > (1.30)

can be rewritten in terms of (1.29) as

e? / n(r,r")drdr’

2 |r — 7|

When electrons are totally uncorrelated as in Hartree and HF one can
show that n(r, ") = n(r)n(r'). One can then express n(r,r’) as

n(r,r’) =n(r)n(r)(1 + g(r,7")), (1.32)

where all the information about correlations is contained in g(r,r’). If we
integrate n(r,r’) given from (1.29) over ' we get N — 1. This means that
from (1.32) we have

/g('r‘,r’)n(r’)dr' =-1. (1.33)

This important sum rule simply states that each electron in the system
only interacts with the N — 1 other electrons. Equation (1.33) then expresses
the fact that for each electron at r there is an exchange—correlation hole
surrounding it. One can however wonder if this hole is due mainly to exchange
or correlation. To get some information on this we must take the spin of the
particle into account. Assuming now that there are N4 electrons with spin T
and N, particles with spin | it is clear that one electron with spin 1 at r will
interact with Ny — 1 electrons of the same spin and with N of opposite spin.
If we separate the previous expressions with respect to the spin components
we get in obvious notations:

choul = (131)
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[ontrimsteiar = -1,

/gN(r,r’)nT(r')dr’ =0. (1.34)

This generalizes that the exchange hole, corresponding to g44, is equal to
—1 even including correlation effects. On the other hand for electrons with
opposite spin there is a local screening hole, equal to —1 for metals, due to
screening effects only but with the compensating charge on the surface of
the system confirming that [ g4, (r,7")nt(r')dr’ = 0. This will prove to be
of primary importance for nanocrystals.

1.1.5 Local Density Approaches

The idea of replacing the complex one-electron Schrédinger equation with the
non-local exchange-correlation potential by a local density approximation
started early with the work of Thomas-Fermi [7,11]. This one is valid for
high electron density systems, e.g. for heavy atoms. In this limit the potential
energy V(r) of an electron in the system can be considered to vary slowly
in space and the electron density can be approximately replaced locally by
the value it would take for the free electron gas, i.e. by (1.22) in which k2 is
given by 2mg(er — V(r))/h%:

) = o (22" g v (1.35)
32 \ h2 F ) '
V(r) is solution of the Poisson’s equation, i.e. one arrives at the self-
consistency equation:
827

Av(r) = —— (%)3/2[@4(,«)13/2. (1.36)

This one was solved numerically for neutral and ionized atoms and shown
to reproduce important trends along the periodic table. We shall use it in the
following to get a simple description of screening effects in the usual semi-
conductors and insulators which can be considered as high electron density
systems.

Many refinements have been brought to make the Thomas Fermi ap-
proximation more quantitative but an essential step forward is due to Slater
[12,13]. His basic idea was to replace the non-local exchange term taken under
the form of (1.26) by a statistical average over the filled states which is then
calculated locally as if the system was an electron gas. The corresponding
Slater exchange potential vyglater is thus locally the same function of n(r)
as the electron gas and is also equal to 2e4 the total exchange energy per
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electron given by (1.25) with 4rr3/3 = (n(r))~!. This gives in atomic units:

UxSlater T [n('r’)] 2

Slater realized that, to get more accurate results, it was necessary to scale
this local form of exchange by a factor «, close to 1, lying in the interval
[0.75,1]. With this he was able to get quite reasonable results for atorms,
molecules and solids.

The decisive step in these density based theories came from the basic the-
ory established by Hohenberg and Kohn [14] but also from the work of Kohn
and Sham [15] which made it a practical computational tool. The general
idea is always the same, i.e. one writes one-particle equations going beyond
Slater’s exchange vxsiater t0 also include correlations effects, introducing an
exchange—correlation potential vy.. We now summarize the general arguments
leading to these density functional theories (DFT) and their local density ap-
proximation (LDA). We write the full N electron Hamiltonian

H =T+ Vee + Vexe(T) , (1.38)

- (1.37)

0.916 3 [3 (r)] 173 '

where T is the kinetic energy operator, Ve the electron—electron interaction
and V. a one-particle external potential. We follow the arguments of [14] as
well as other authors [9, 10} and summarize first the conclusions of Hohenberg
and Kohn [14] :

— Two external potentials Ve, and V[, differing by more than a constant
cannot give the same ground state electron density n(r). There is thus one
to one mapping between Vi and n(r) which means that n(r) completely
determines the ground state properties of the system.

— In the spirit of the variational methods we define the following density

functional

F(n) = (W|T + Veel) (1.39)

min
pon(r)
where the minimization is performed over all ¥ giving the same density
n(r). Then the total energy functional

E(n)=F(n)+ / Vext(r)n(r)dr (1.40)

is also minimum since the last term on the right hand side does not vary
with ¢ if n(r) is fixed.

— The above definitions remain valid for fractional electron numbers if one
uses mixtures of states ¢ with different total numbers of electrons. Mini-
mizing E(n) with the constraint that the number of electrons is given by N
gives, with the method of Lagrange multipliers, the functional derivative

dE(n)
on

Il = v (L41)
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where the chemical potential yy is discontinuous at each integer value of
N.

These general arguments do not give a recipe for an actual calculation
since the functional F'(n) is unknown. The idea of Kohn and Sham [15] was
then to relate the interacting N electron system to a fictitious non interacting
one leading to the same electron density n(r). This one corresponds to the
following Kohn—Sham Hamiltonian

Hys =T + Vks, (1.42)

where Vkg is the Kohn—Sham external potential. One can repeat the proce-
dure leading to (1.41) for this new Hamiltonian, requiring that it gives the
same py. This leads to

T
((5)1(1 ") + Vks = pun (1.43)
with:
To(n) =¢mm (W|T|) . (1.44)

Equating (1.41) and (1.43) one gets, with the help of (1.38) and (1.39),
the following expression for Vikg:

)
VKS = % [F(Tl) - T()(TL)] + V:axt . (145)
Writing F'(n) — To(n) as the sum of a Hartree energy
e [ n(r)n(r)
By =< [ B gy .
’ 2/|T_ rds (1.46)
and an exchange—correlation energy Ey.[n(r)], we get
Vks = Vg + ch[n(r)] + Voxt (1.47)
with:
Vig = 6EH B /
Ir - 7”|
Exc[n(r)]
Vie = .
[n(r)] 5 (1.48)

All this means that one can construct the ground state electron density
by solving the following one-particle Hamiltonian

{t + Vexe (1) + Vi (r) + Vie[n(7)]} 1 (7) = exddre(r) , (1.49)

where t is the one-electron kinetic energy operator. One then gets the density
n(r) as for any Slater determinant as

= mlew(r)l® (1.50)
k
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and the total energy as Ty(n) + Fy + Fy.. The one-particle equations are of
the Slater type discussed before and thus much simpler than HF equations.
They also have to be solved self-consistently. However the major difficulty
is that Ey.[n] and thus Vi.[n] are unknown. The simplest way to overcome
this difficulty has been to replace Ex[n(r)] locally by the value it would have
for the electron gas. This represents an extension of Slater’s ideas to include
correlation effects and leads to the well-known local density approximation
(LDA).

If one considers the exchange-only term the expression of V,. = vy turns
out to be very simple. We have seen earlier that the exchange energy per
electron &y of the free electron gas is —3/4 (3n(1")/7r)1/3 from (1.37). The
total exchange energy per unit volume Ey is given by ney, i.e. proportional

to n*/3. We can thus write:
6E, 4
Be= 25 = e (1.51)

This turns out to be only 2/3 of Slater exchange potential vygiater 8
pointed out in early work [15]. This gives some reasonable explanation of an
« value smaller than 1 in Slater’s self-consistent X« method. To get the full
Vi of LDA one must add the correlation energy of the electron gas. There
have been in the past several analytical expressions which have been proposed
(see e.g. [9,10,16] for a review). A popular one for numerical calculations is
a parametrized form [17] which is detailed in Sect. 3.2.2.

LDA turns out to give satisfactory results regarding the predictions of the
structural properties of molecules and solids. For instance, in solids (either
with sp bonds or d bonds, as in transition metals) the inter-atomic distances
and the elastic properties are predicted with a precision better than 5% in
general. This remains true for diatomic molecules, except that the binding
energy is overestimated by 0.5 to 1 eV [16]. Attempts to improve on sim-
ple LDA have first been based on expansions of Vi, in Vn(r) [18,19] but
these violate the exchange-correlation sum rule of (1.33) which leads to seri-
ous problems [20]. More recently generalized gradient approximations (GGA)
have been proposed [20, 21] where Vi, depends on n(r) and Vn(r) but not in
a simple Vn expansion. The various GGA forms which have been proposed
are constrained to fulfill exact sum rules. GGA often leads to better results
than LDA for total energies but sometimes worse results for bulk moduli and
phonon frequencies. For lattice constants they seem to be of equal quality
with an accuracy of order 1%.

1.2 Quasi-particles and Excitons

One of the main problems which arise with the ground state theories de-
scribed earlier is that the eigenvalues of the one-particle equations provide
poor information concerning excitation energies. We shall discuss this on the
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HF case first and summarize what happens with LDA. We then introduce the
concept of quasi-particles and discuss the most efficient method to calculate
their properties which is the GW approximation. Finally we treat the case of
excitons which correspond to pairs of quasi-particles, an electron and a hole,
bound by their attractive interaction.

1.2.1 One-Particle Eigenvalues

Let us consider the simplest process of ionizing an N electron neutral system.
The ionization energy I and electron affinity A are defined as:

I=E(N-1)—E(N), A=E(N)-EN+1). (1.52)

In the HF approximation one can even define from which state the electron
is ionized. Assuming that it is the state k for which ng = 1 in the N electron
system and ng = 0 for the N — 1 electron system. This defines:

I, =E(N—-1,n,=0)— E(N) . (1.53)
Using the HF expression (1.14) one straightforwardly gets:

Iy =— {(k|h|k} + 3 (ktjolkl) - (kl|v|lk))} . (1.54)

l

Writing (1.18) in vector form and projecting on |k) one directly obtains
Iy = —¢p (1.55)

i.e. the ionization energy is just the opposite of the one-particle eigenvalue,
as stated by Koopman’s theorem [22]. A similar argument holds true for the
electron affinity. In HF one can also obtain the excitation energies in terms
of the excitation of an electron in state k' and creation of a hole in state k
leading to excitation energies equal to ex — e.

Although these results can serve as a guide the situation is by far not
so simple. The above derivation is based on the fact that the wu; remain
identical or frozen between the N and the N & 1 systems. This is true for
delocalized states in infinite systems since the influence of the extra electron
or hole scales as 1/V, V being the volume of the system. This is no more
correct in atoms, molecules or nanocrystals since the one-particle states will
depend on occupation numbers. A change in occupation numbers indeed in-
duces an electronic relaxation in the system corresponding to a screening of
the extra electron or hole. However, even for infinite systems, HF excitation
energies do not provide correct values of the band gaps of semiconductors.
In fact HF consistently overestimates their bandgaps, by more than 50%, the
maximum discrepancy being for Si with (Eg)ur =~ 5.5 €V instead of 1.17 eV
experimentally.

From the variational derivation of DFT, there is no particular reason why
the eigenvalues of the one-particle equations should correspond to excitation
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Fig. 1.3. Calculated bandgap in LDA (4) and in GW ([J) versus experimental
bandgap for several semiconductors. Results for II-VI semiconductors are from [23]
and others are from [24]

energies. One exception is the case of the highest occupied eigenvalue which,
on the basis of the definition of Vikg, should give an accurate value for the
ionization energy (it is exact for the true V,.). However, for the excitation
energies, LDA, as well as DFT in general, leads to what is called the bandgap
problem. Indeed, although the general shape of the bands of semiconductors
is correctly predicted by LDA, bandgaps are consistently underestimated. For
instance, in silicon, the predicted value is 0.65 eV (1.17 eV experimentally)
while in germanium the LDA value is & 0 eV (0.7 eV experimentally). Figure
1.3 shows that this holds true for several semiconductors and insulators.

1.2.2 The Exchange—Correlation Hole and Static Screening

The previous discussions illustrate the fact that one-particle theories cannot
yield exact ground state and excitation energies at the same time. In this
context a fruitful concept is provided by the notion of quasi-particles. For
instance an excess electron injected into the N electron system, due to its in-
teraction with the other electrons, cannot be described exactly by the solution
of a one-particle Schrodinger equation. However, in favorable (and fortunately
common) cases its spectral representation (see [25-27] for a detailed mathe-
matical discussion) remains strongly peaked around a given energy. If so one
can speak of quasi-particles which are approximate solutions of a one-particle
Schrodinger equation, but with a broadening due to the interaction with the
other particles. The picture in real space is that of an electron surrounded
by its exchange—correlation hole.

Before turning to the GW approximation, let us come back to a simple
picture of the quasi-particle which we started to discuss in Sect. 1.1.4. If
we try to write the Schrédinger equation of the excess electron, we can start
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from the HF formulation where both the Hartree and exchange terms contain
the bare interaction v(r,r’) = €?/|r — 7’| between the excess electron at 7
and other electrons at r’. Correlation effects correspond to the fact that the
electron at r repels the other electrons to create its Coulomb hole. If one treats
this electron as a classical test charge, the resulting effect can be described
by linear screening theory. Here the bare potential v due to the test electron
charge at r is at the origin of an induced change in the electron density dn;nq
which in turn creates an induced potential Vi,q. The total potential in the
system is thus W = v 4 Viuq. The induced electron density depends on W
and, if we linearize the dependence, one can write formally

0ning = XoW ,
W = v+ vy 6ning , (1.56)

where xo is the polarizability, and vy is the potential per unit of induced
electron density. As we shall see later (in particular in Sect. 1.2.7), the dif-
ferent one-electron theories give rise to different potentials vy and different
results for the inverse dielectric function. The simplest case corresponds to
the Hartree approximation in which case vy = v the bare electron—electron
repulsion. The result for e~!(w) corresponds to the so-called random-phase
approximation [28-32].
Equations (1.56) lead for W to

W=¢lv,
e =(1—voxo) - (1.57)

Of course all these formal relations are integral equations. For instance
the screened potential due to the electron at = is given at 7’ by:

W(r,r') = /efl(r,r”)v(r”,r’)dr". (1.58)

The simplest idea to take into account correlation effects is thus to replace
in the Schrédinger equation of the excess electron the bare potential v by its
screened counterpart W. This adds to the Hartree term a correction equal to
what corresponds to the Coulomb hole

1
‘/coh = 5‘/ind(r7r) s

= %/ [ (r, ") = 6(r — )] u(r',r)dr’ (1.59)

1.2.3 Dynamically Screened Interactions

In this section we extend the formulation of Sect. 1.2.2 to the case of time-
dependent perturbations. This will play an essential role in the description of
quasi-particles and excitons. We first consider the linear response of a system
described in a one-particle picture (like Hartree, HF or LDA) to which belongs
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the so-called random-phase approximation [28-32]. In the second part we
give a general expression of the linear response function to be used in our
derivation of the GW approximation.

Linear Response Function in One-Electron Pictures. Here we follow
the approach of Ehrenreich and Cohen [29] and generalize (1.29) to define
the time-dependent density matrix as

n(a, ' t) = npup(e, hup (e, t) (1.60)
k

where again (x = 7,£) and the ug(x,t) are the solutions of the one-particle
equations (in atomic units)

i%uk(w,t) = h(z, t)ug(z,t) , (1.61)

where h can eventually be a non-local operator as in the HF picture. From
(1.60) and (1.61), n(x,a’,t) obeys the equation of motion:

%(w,m',t) = (@, t) — h(z', )] n(z, z', 1) . (1.62)

We now consider the case where the Hamiltonian can be written as
the sum of a time independent unperturbed part ho(x) and a small time-
dependent perturbation W (a,t) (to be discussed later):

h(z,t) = ho(x) + W (z, 1) . (1.63)

It is thus quite natural to expand n(z,z’,t) in terms of the eigenstates
ur(z) of hy:

$ 12 t ank’ uk uk,( ) (1.64)
k!
(1.62) is then replaced by
i}%n’“’“’ (t) = [hyn)gk - (1.65)

We now write this to first order in W and dn(x,x’,t) the first order
induced change in n. We get

.0
IE(Snkk/ (t) = [ho,én]kk/ + [W, no]kk/ (1.66)
or, since (ng)kk’ = NkOkk Where ny is the occupation number:
0
la&nky( ) (5k — Ek/) Ongrr + (nkf — nk) Wik . (1.67)

We can now Fourier transform this equation by writing

1 o
Wi (t) = o /Wkk' (w)e Wty (1.68)
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and a similar expression for dngi (t) (the infinitesimal § ensures that all
quantities vanish in the remote past). We get:

o N — Nk
Onpr (w) = R —— iéWkk (w) . (1.69)

This result will be central to our discussion of excitations in the following
sections.

We now consider screening by a simple generalization of the static case
given by (1.56) writing the induced charge density at frequency w

OMina (7, w) = /5n(w, @, w)d{ = /Xo(?", ', w)W(r',w)dr’ (1.70)
which, using (1.69) and (1.70) gives for the frequency dependent polarizability
/ Mg — N/ * /
= : , 1.71
Xo(’f‘,’l",u)) ;Ek—é‘k/—w—i5fkk (r)fkk (7‘) ( 7 )
where:
Jow (1) = /uk(w)uz,(m)df. (1.72)

With this the set of equations (1.56) to (1.58) remain valid in terms of
frequency dependent quantities which we have just defined.

Exact Formulation. One can derive an exact formal expression for e~ 1(w)
which will prove of fundamental interest in the following. We consider an NV
interacting electron system of Hamiltonian Hy subject to a small external po-
tential ¢(r,t) switched on adiabatically in time. The first order perturbation
is thus

N
V=Y 6t = [ atretr.oar, (1.73)

where 7(r) is the density operator defined by (1.73) as va 5(r —r;). We
start from the time-dependent Schrédinger equation (A = 1)

ol

i% =(Ho+V)|P), (1.74)
which can be simplified by the transformation

@) = e~ Hotly) | (1.75)
to give

) o

where V' is now expressed in the interaction representation:

V(t) = eflotye-iflot (1.77)
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Equation (1.76) can now be integrated from a remote time ¢, in the past
where ¢ = 0 and |u) is the ground state |ug) of Hy. To first order in V' this
gives:

lu(t)) = <1 - i/t V(t’)dt’) |uo) (1.78)
Now the electron density is given by
n(r,t) = (Z|a(r)|¥) = (uli(r,t)l) , (1.79)

where 7i(7,t) is also defined in the interaction representation. From the pre-
vious two equations, we obtain
u0> (1.80)

n(r,t) = <u0 (1 +i /t: V(t’)dt’) fi(r,t) (1 —i t: V(t')dt’)

which, when subtracting the unperturbed density (ug |7i(r,t)|ug), leads to
the induced electron density
u0> (1.81)

Onina(r,t) =1 <u0 /t [f/(t’)ﬁ(r,t) - ﬁ(r,t)f/(t’)} de’

— 00
in which we have taken g — —o0. Using the fact that the net result must be
real, we can transform this expression to:

Onina (7, t) = —1/ dt /dr (ug |[(r, ), (', )] wo) &(r', ") . (1.82)

The linear response function x(r,r’, ¢t —t') defined by

OMNina (7, t) = /+OO dt’/dr'x(r,r',t —thYo(r', t) (1.83)
is thus given by th_eoc;xact result, obeing the Heavyside function

x(r, vt —t') = —i(N|[a(r,t), 2 )| Nyt —t'), (1.84)

where |N) = |ug) is the exact ground state of the N electron system. This
expression can still be transformed by developing the commutator and in-
serting the closure relation ) |Ns)(Ns| = I summed over all excited states
s of the N electron system of energy ws above the ground state to give, with
T=t—1,

x(r, 7', 1) = —iZ [ns(r)n: (r')e™wsT — ns(r’)n;‘('r‘)ei“’s"] O(t), (1.85)

8

where:
ns(r) = (N |a(r)| Ns) . (1.86)

In the absence of magnetic fields, ns(r) can be taken to be real [32,33] so
that the Fourier transform of (1.85) writes:

x(r, 7' w) Zns mins(r) [(w — ws +10) 71 — (w+ws +16) 7] . (1.87)
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These expressions correspond to the retarded response function. One can
also define a time-ordered response function to be used with field—theoretic
techniques, their properties being closely related [32].

The poles w, of the response function are the excitations of the N elec-
tron system. Their low-energy part corresponds to electron—hole excitations.
However the coupling to an external field, i.e. screening, is dominated by
plasmons which are high energy, long wavelength density fluctuations of the
system. This point plays a central role in our derivation of the GW approx-
imation (next section) as well as in actual calculations using this method,
often based on plasmon-pole techniques.

It is useful to derive the general expression of the induced potential
Vind(7, 7', w) created at point 7 by a test charge at r’. We can formally
write

Vind = v60ing = vXV , (1.88)
i.e. in full
Vina(r, ) = 3 22 (r)Vy(r) (1.89)
Y — (w+10)? —wi ’

where V; is the potential produced by the density fluctuation n,:

Vi(r) = /v(r, g (r')dr' . (1.90)
In this formulation the inverse dielectric function is given similarly by
el =14wy,

2w,
_1+ZVns TR (1.91)

Another interesting point is what one obtains when y is calculated by
using for | Vs) pure electron-hole excitations, i.e. excited Slater determinants,
neglecting the effects of plasmons. Then x reduces to xg, the independent
particle polarizability, and ¢! is given by:

L=1+4wyo. (1.92)

If this is considered as the first term of a series expansion in powers of
vXo, summation of the series gives

= (1—wvx0)™", (1.93)

which corresponds to the expression in the random-phase approximation (see
further discussion in Sect. 3.3.1).
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1.2.4 The GW Approximation

This was derived long time ago [32] and its recent success is mostly due to
the improvement in computational power which now allows its application
to realistic systems (small aggregates, perfect crystals and their surfaces...).
It is based on an expansion of the exchange—correlation self-energy in terms
of the dynamically screened electron-electron interaction. This can be done
systematically with field-theoretic techniques, one and two-particle Green’s
functions and the use of functional derivatives.

Here we present an approach which evidences the role played by plasmons
in renormalizing the electron—electron interactions. This will allow us to ob-
tain an expression for the total energy of the ground state of the N electron
system and, from this, to get the quasi-particle energies in a form identical to
the GW approximation. As discussed in Sect. 1.2.3, the excitation spectrum
consists of single particle excitations and also to plasmons which correspond
to electron density fluctuations. We start from the decoupled situation which
means that we write the combined states of the NV electron system as simple
products

¥, s) = |)ls) , (1.94)

where |t) is a Slater determinant and |s) is a state where the s* plasmon
mode of frequency w, has been excited. We are mostly interested in the low-
lying states |tx,0). These are coupled to other states |y, s) by interactions
(¢x, O|V'|y, s) (Fig. 1.4). To obtain the coupling potential V' we consider one
electron at 7; which interacts with the plasma-like fluctuations §7(r) via the
potential given in (1.73) i.e.

V(r;) = /v(ri,r)éﬁ('r)dr . (1.95)
Energy
A
. Plasmons

g4
Ky

- -

— Fig. 1.4. The electron—plasmon cou-
Slater determinantal pling induces a renormalization of the
stalcs electron—electron interactions
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The total V =), V(r;) gives rise to the following matrix elements

<O ZV(ri) s> ¢l> . (1.96)

We use the fact that 47(r) has matrix elements only between the plasmon
states, given by (1.86) i.e.

(0167(r)| 8) = dns(r) . (1.97)

From this we get
> Vi(r ¢,> , (1.98)

where V(r;) is the Coulomb potential induced by the fluctuations dn, defined
by (1.90). For the low-lying states |y, 0), we write

(E EkO |wk7 Zh/]av ’llia,S|V|’L/}k, >7

(Vg 0|V |4, 8) = <¢k

<d)ka OlV”l/)l, S) = <¢k

(E = Eas)lthas s) lel, ) W1, 01V [thas ) - (1.99)

Injecting the second equation into the first one gives

(E — Exo)|x,0) le Z W1 0V 8) War sV, 0 )

E —E,us

We can now project this set of equations onto |0). Using the fact that
[k, 0) = |¥k)|0), using (1.98) and E,s = F, + ws, we get the following set
of equations between the Slater determinants

(BBl =3 ) e AT e e S LT

This means that the electronfplasmon coupling induces effective interac-
tions between the Slater determinants given by

(Ve ) = 3 S22 Vs(r’g zf‘%wf in Valrol ds) (1.102)

a,s

which form the renormalizing part of the electron—electron interactions (Fig.
1.4). We now proceed to the calculation of the relevant interactions between
the ground state Slater determinant |v) and those |¢,.) which differ from it
by excitation of one electron from the valence (filled) state u,, to a conduction
state u.. For this we use the rules for the matrix elements of sums of one
electron potentials between Slater determinants [12,13]. This gives us the
following results
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<¢O ZV Tz
<1/)0 ZVS(’W)

In deriving the first contribution to (1.103) we have used the fact that
(o |D2; Vs(ri)| o) = >, (v|Vs|v) = 0. The one-particle matrix elements are

(alVil) = / ul (P Va(r)us(r)dr | (1.104)

We now directly get the relevant matrix elements (¢ |Veg|11). The basic
one is

2
E — Eo = (0| Vestltbo) = Y E—K_P—'Ewi-'w— , (1.105)

,¢,8

) =0,

where Eg and E,. as defined in (1.101) are the determinantal energies in the
absence of electron—plasmon coupling. To find a simple accurate solution to
(1.105) and to the set of equations (1.101) we start from Slater determinants
built from single particle equations which match as exactly as possible the
excitations energies. We express the denominator of (1.105) as E — Fy +
Ey— Eyc —ws. We then write Fy — FE,. = €, — €. the eigenvalues of the single
particle equations. If the ground state determinant is correctly chosen E — Eqy
can be neglected and we get for the ground state energy of the N electron
system

v|Vi|e)|?
Ecorr(N) - Z g]—% : (1.106)

v,C,8

Note that approximating Ey — E,,. by the difference in eigenvalues neglects
the electron-hole attraction which exists even for a determinantal state 1.
However this term tends to zero when the size of the system increases and is
negligible for large enough systems. This corrective term will be considered
in the next section.

To get the quasi-particle energies, we now have to calculate the correlation
energy for the (N + 1) electron system with an extra electron in state k. The
corresponding Slater determinant is now |k, ). The correlation energy has
the same form as (1.106) except that there is one more occupied state k and
that one must add the non zero contribution

Z (k400 |32, Vi (ri)| ke, o) Zl k|V|k (1.107)

—Ws

so that one gets

Eeore(k, N +1) = Z' kmk ZZZE i“;'c_w . (1.108)
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where 3’ means that k is included in the sum over v and excluded from
that over c¢. From (1.106) we easily get the correlation contribution dey to
the quasi-particle energy g

_ [(kIVsle)* [(k[Vs|v)[?
Ser _;Ek_gc_% ;——Ev_ek_%. (1.109)

Adding to this the Hartree—Fock contribution and introducing the occu-
pation numbers we get under vector and operator form

n l—nl
= x Al s - .
€k <k ht Vi + 2 ZV1><J|V{EZ_€k_wS Ek_sl_ws} k>

l,s

(1.110)

In this expression one can consistently use the same €, in the correlation
contribution since the excitation energies e — ¢; of the single-particle Hamil-
tonian are in principle matched to the exact values. The main difficulty is
that the corresponding exact eigenstates |k) are not exactly known. Equa-
tion (1.110) is strictly equivalent to the GW approximation [34], as shown in
the following. As commonly done, we group together the exchange term and
the correlation contribution to get the total self-energy 2. The quasi-particle
Hamiltonian is thus given by the Hartree part plus a total self-energy term
given by (1.19) and (1.110) i.e.

Xz, &', ex) Zul

€l — €k — Ws Erp — €& — Wg

x n,v(r,r’)+2v;(r)v;*(r’)( o 1o )}.(1.111)

Note that, in this expression, the n; are the occupation numbers of the
N electron system. An identical result is obtained when adding a hole in
an occupied state and calculating the corresponding electron energy as e =
E(N)— E(N —1). The relation between the V; and the frequency dependent
screened potential is provided by (1.89). To avoid convergence problems one
usually adds a small imaginary part —in to w, (n — 0") which corresponds
to the use of a retarded interaction.

To recover the usual expression of the self-energy in terms of the screened
Coulomb interaction W = v + V4, we write from (1.89)

_;T-ImW rr,w) ZV 0w —ws) —d(w+wy)],  (1.112)

using the fact that:

Im ( lim (2 + in)~ 1) = —md(x) . (1.113)

n—0+
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Thus we deduce from (1.111)

Z'a:ww Zul

1 1—
X nlv(r,r')——/ dw’ i — - i -
T Jo g-—w—w+in w—g—w +in

x Im W(’r,r’,w')] . (1.114)

A more compact form is obtained by introducing the Green’s function

by w(@)uf (z')
Gz, x',w) = zl:w—sﬂrin Sionter o) (1.115)

where ep is the Fermi level. Using an integration along a contour in the
complex w' plane, one can show [34, 35] that the self-energy operator is also
given by

Yz, z',w) / dw'W(r, 7', w)G(z, &', w + w')e™ | (1.116)

where the product of G and W is at the origin of the name of the method.

Although quite accurate, the GW expression given by (1.110), (1.111)
and (1.114) is only approximate. We shall see in Sect. 1.2.6 how it could
be improved along the lines discussed above. Finally one could also obtain
(1.110) from resolution of the quasi-particle equation

(hur + Zeorr) [k) = exlk) (1.117)

where hgr = h + Vg + Xy and X, is the correlation part.

Usually GW calculations are performed using perturbation theory from
LDA results which provide a quite efficient starting point. Calling ¢ and 52
the GW and LDA eigenvalues, one gets to first order

ex = ep + (ur |Z(er) — vl up) (1.118)
and linearizing this with respect to 5, — £3:
ug | X (D) — vye| u
e =0 + (e | 27(6f) = e ) (1.119)

A

Successes and failures of GW are discussed in detail in [33, 36]. For our
purpose the results of major interest concern the bandgap of semiconduc-
tors and insulators. Figure 1.3 shows that the GW predictions are extremely
accurate and provide a quantitative tool for analyzing semiconductor nanos-
tructures. We shall come back to these in Chap. 4.
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1.2.5 Excitons

In semiconductors and insulators they correspond to electron—hole excitations
of the system. To describe their properties the best is to start again from the
Hartree-Fock (HF) level where the basic states are Slater determinants. Let
us then consider a system for which the ground state is described by a Slater
determinant 1y for which all one-particle valence states are filled and all
conduction states are empty. 1, is the Slater determinant obtained from the
previous one by replacing the spin—orbital v by ¢, i.e. by exciting an electron—
hole pair (here we use for v and ¢ full spin-orbitals including the spin part
as in (1.6)).

At the HF level one starts from spin orbitals which are solutions of the
single particle equations hgp|k) = 0 corresponding to (1.18). This makes sure
that there is no coupling between ¢ and ¥, since [12, 13]

(o H|ye) = (vlhgr|c) = e(v|c) = 0. (1.120)

To obtain the lowest exciton state in the procedure one should then diago-
nalize H in the manifold span by states v, corresponding to single electron—
hole excitations. This obviously neglects coupling with higher excited states
via direct electron—electron interactions. In view of their magnitude this is
certainly not a good approximation. Nevertheless this will introduce the pro-
cedure with use of renormalized interactions. We then calculate (¢, |[H| ¥y ¢r)
from the general rules given for instance in [12,13]:

(oe [H| o) = (8¢ — €4)0ppOeer + (v |[ufve) — (cv'|v]cv) . (1.121)

In this expression the first term is the difference in HF one-particle ener-
gies and the other two correspond to the definition of (1.15). It is of interest to
notice that the last term with minus sign corresponds to the direct Coulomb
interaction (it involves interaction between charge densities ¢*(x)c'(x) with
v*(z')v'(x’) which for the diagonal part give |c(z)|? and |v(z’)|?) while the
first one represents the exchange term. The natural procedure would then be
to diagonalize the matrix given by (1.121) to get the excitation energies.

We now want to parallel this procedure but in terms of renormalized
(or dynamically screened) electron—electron interactions. We proceed along
the same lines as GW i.e. we now build the Slater determinants from spin—
orbitals which are solutions of the quasi-particle equation (1.117). We must
then evaluate the matrix elements of the type (1.120) and (1.121) but for
the renormalized Hamiltonian H + V.g where, as before, Vg is due to the
renormalizing part induced by the interaction with plasmons. This is worked
out in detail in the Appendix A where it is shown that

(o |H + Veg | thue) = (v|hur + Z|c) = ec(v]e) =0 (1.122)

and
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(Wue |H + V;eff| 1/’u’c’> = (5c — €4) 0y Ocer + <CUI|U|'UC,> - (cv’lv|c’v)
1 1
s "Vl
+ES:<C|V'”><” Vel {E—Eo AR i —— —ws}

~ o 1 1
N B ey AL

Note that except for the last two terms in (1.123) these relations only
hold approximately if higher order terms can be neglected. We have kept the
full energy dependence of these last two terms to compare them with other
results but consistency would require that ¥ — E,,., F—E,, and E—FE,. be
neglected. The most drastic approximation concerns (1.122) which essentially
requires that the bandgap be negligible compared to ws.

It is interesting to compare the structure of renormalizing terms in (1.123)
to those of the direct terms. We can write:

(elValo) | Vale') = / UL (@)Va (@il (Vi (Y (')

(elVsl) (' |Vslo) =/UZ(w)Vs(7‘)uc' (@)uy (&) Vs (r')uy () deda’ . (1.124)

The first term has the structure of the exchange interaction and the second
that of the Hartree one. One can then rewrite (1.123) as

<wvc |Heﬁ| wv’c’> = (Ec - Ev)5vv’5cc’ + <Cv/f'USCX|'UC/>
—(cv'luscule'v) (1.125)

where vsox and vgopg are respectively the renormalized or screened electron—
electron interaction for exchange and Hartree terms given by

’USCX(TJ")
1 1
— / !
_v(r,r)+2;Vs(r)Vs(r){E;Eo_ﬂws + o — —ws} ,

vscu(r, r')

1 1
=v(r,r)+ ) Vi(rVs(r') {7+ 77— - (1.126)
S E—-FEyo —ws E—FEye—ws

The diagonal term (cv|vscx|ve) — (cv|vscn|cv) in (1.125) is the correction
to €. — ¢, in single determinant states due to the electron-hole interaction. It
tends to zero when the size of the system increases and is thus important for
small systems only. The interesting point with (1.125) and (1.126) is that we
find that both the Hartree and exchange part are dynamically screened. This
is at variance with some work in the literature [36-38] based on approximate
resolution of the Bethe-Salpeter equations where only the Hartree term is
screened in exactly the same way as in (1.126). We attribute this difference
to approximations in these treatments neglecting contributions from excited
states |9q)|s) with |¢,) outside the manifold of the single excitations |t,).
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As shown in Appendix A these excitations are necessary to have a complete
renormalization contribution. Their neglect would not allow to get . — &, in
(1.125) as well as the condition (g |H + Ve| ¥ue) & 0 which is necessary for
(1.125) to be accurate.

To be coherent with the approximations made on the other terms (equiva-
lent to second order perturbation theory) one should take E ~ E,. & E,o =
E,.. This is valid when the binding energy of the exciton is weak so that
only excitations close to the band gap are important. If Eg < w2, one ob-
tains the simple result that the screening part in both terms of (1.126) is
—2V,(r)Vi(r') Jws. From (1.89) this is just the statically induced potential
Vind(7, ') created at 7’ by a point charge at 7, also equal to (e * —1)v. Both
terms in (1.126) thus involve the statically screened interaction (1.58)

W(r,r') = /e“l(r,r”)v(r",r')dr” . (1.127)

Finally let us say a few words about the effect of exchange. From known
considerations [2, 7] one can build excitonic states either with total spin S = 0
or S = 1. In the last case there is no exchange contribution while, for the
singlet S = 0, the exchange contribution in (1.125) is 2{cv’|vgcx |vc’) in which
one now only considers the orbital part of the spin—orbitals.

1.2.6 Towards a More Quantitative Theory

One can devise a more quantitative approach along the lines discussed above.
The procedure is to build a Slater determinantal basis from an accurate
single-particle approach, e.g. the LDA approximation for which excitation
energies can be expressed as differences in eigenvalues. One then considers
that Slater determinants |¢,) and plasmons |s) are eigenstates of separable
Hamiltonians. This means that the total eigenstates are products |, s) =
|¥a)|s). As before we want to treat completely the problem for low-lying
excitations of the form |¢)|0) where the |} are restricted to the ground
state [¢g) and e.g. to the single particle excitations of the form |t,.) (one
could eventually include higher excitations but difficulties arise when they
overlap the plasmon states so that one should stop at some energy cut-off).
We thus write, as before

Elyr,0) = Hlyx, 0) +Z|wa, ) (¥as 8|V]¢5,0)

(B — Ey — ws)|tha, s) = Zml, (11, 0|V [tha, 8 - (1.128)

Here H is the full Hamiltonian containing the direct electron-electron
interactions. The central approximation is that no electron—plasmon inter-
action is included in the higher excited states, their energy being E, — w;.
However such interaction is likely to broaden the spectrum of high energy
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excitations without modifying substantially the results for low-lying excita-
tions. Injecting the second equation into the first one and projecting onto |0),
we get as for (1.101)

(01, Vari) ) (e

5, Valrs)| )

Elv) = Hlw) + ; ) ; -
(1.129)
This is equivalent to diagonalize the matrix
V() |Ya) (Ve Vi(r
iy ZZ el Gl V() Li0)

._ws

in the subspace of low-lying determinants |1g), |tyc)... This is what we have
done before but with simplifying assumptions for E equivalent to second
order perturbation theory. One could however diagonalize the full energy de-
pendent Hamiltonian (1.130) with the expressions of the matrix elements
derived in Appendix A. This would provide to our opinion the most quanti-
tative treatment applied to the exciton problem.

1.2.7 Time-Dependent Density Functional Theory (TDDFT)

This is an extension of the density functional theory (DFT) discussed in
Sect. 1.1.5 to time-dependent perturbations. The interest is that, in principle,
the frequency dependent response has poles at the excitation energies of the
system. One can thus hope to obtain in this way excitation energies which
are as accurate as the ground state properties predicted by ordinary DFT
even in its local density approximation (LDA).

The extension of DFT to time-dependent problems has been the object
of several studies [9, 36,39-41]. In particular it was shown that there is a one
to one correspondence between a time-dependent external potential Vo (7, t)
applied to an interacting IV electron system and the electron density n(r,t)
of this system. Furthermore one can work in the Kohn-Sham spirit [15] and
obtain the same density for a non-interacting N electron system subject to
the so-called Kohn-Sham potential which, as in Sect. 1.1.5 can be written

Vks = Vext + Vi + Vae (1.131)

where V41 and V. are now time-dependent Hartree and exchange—correlation
potentials. Let us now concentrate on the linear response of the system, i.e.
consider a first order external perturbation ¢ (i.e. Voxt = Vext +¢) producing
a first order change énjnq in electron density (i.e. n — n + dnipg). We can
write the formal relation

on
g = 1.132
6n1nd (6‘/;)({; )0 ¢ Xd) ( 3 )
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which is a short-hand notation for

5”1nd(T;t) = /X(r;t7Ir,7tl)¢(1‘/’t,)dr,dt/’ (1133)
with
on(r,t)
() | 1.134
X(’r‘,t,"' b ) ((ﬂ/:mt(’rlvt/))() ( )

In all these expressions, the symbol ()o means that functional derivatives
are to be taken at the ground state density, x is the linear density response
function or polarizability. Now the same result can be obtained from the
non interacting electron system with the Kohn-Sham potential by formally
writing

on 6VKS
OMind = (5VKS 5Vext> ¢ . (1.135)

Realizing that (6n/6Vks)o is the Kohn-Sham polarizability xo and using
the expression (1.131) for Vks we get

)
dnind = X0 {I + (mxt (Va + ch)>0] ¢ . (1.136)

Writing 5‘}5 as 5‘; 5‘5,” and using (1.136) we obtain

dnind = X09 + Xo [%(VH + ch)} ONind (1.137)
0

which is exactly the condensed notation for equation (9) of [41]. As the polar-
izabilities depend on time differences, we can Fourier transform this equation
over time and write one such equation for each frequency w. Noticing that
SVau(r,t)/on(r',t') = €2/|r — v'|6(t — ') and calling fy. = (6Vic/dn)o, one
gets the detailed form of (1.137) as

o2
OMina (T, W) :/Xo(r,r’,w [[ ] + fre(r, 7", w) | Snina(r”,w)dr'dr”

+/X0(r,r’,w)¢(r',w)dr’ ) (1.138)

The poles of dninq (7, w) which give the excitation energies thus correspond
to the zeros of the left hand side of this integral equation. However to find
practical solutions it is convenient to use a matrix formulation. For this one
writes dning in terms of the Kohn—Sham orbitals

Mind (T, w) Zn” i (r)u;(r) . (1.139)

One can inject this together with the expression (1.71) for x into the left
hand side of (1.138). This leads to the system of equations
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fij

nij (W) = ———=
'j4

— > Kjpanm(w) =0, (1.140)
k,l
with fij =n; — ’fl]', Wis = SJ' —&; and

K= [y | :

e

Equations (1.140) and (1.141) are the basic equations of TDDFT as given
in [41]. The only difference in notations with [41] corresponds to the definition
of the Ky, ; for which we have used a convention consistent with our notation
(1.15) for Coulomb integrals. Practical calculations then require a definition
of the kernel K, i.e. of fy, and different approximations have been used [41].
In the adiabatic LDA approximation [9], the exchange-correlation potential
and fy. are expressed in terms of the time-independent exchange-correlation
energy

] + fre(r, 7', w) | ui(r)w(r")drdr’ . (1.141)

~ dExc[n]
Vaclr, ) on(r)
Vaelrot) o 5y gy O Bxeln]
on(r,t') = 5(t t)(Sn(’I‘)(sn(’I‘/) ) (1'142)

where, in LDA, E,.[n] is given locally by its value for the electron gas with
the same density (see Sect. 1.1.5).

TDDFT has been applied to the calculation of the polarizability of
molecules and clusters (Sect. 3.3.3). It also leads to a substantial improvement
of excitation energies with respect to Kohn-Sham eigenvalues for atoms, clus-
ters and molecules [36,41-47], even using the adiabatic LDA. However, one
must note that even the simple random-phase approximation (i.e. neglecting
fxc) gives a good agreement compared to experiments for small systems [48].
In contrast, in solids, the wrong Kohn-Sham bandgap remains [36, 49, 50]
except if the kernel is deduced from the Bethe-Salpeter equation [48].

Finally, TDDFT has been also used to calculate the electron-vibration
coupling in benzene [51].

1.3 Semi-empirical Methods

Up to the advent of the GW approximation, ab initio theories could not
accurately predict the band structure of semiconductors. Most of the under-
standing of these materials was then obtained from less accurate descriptions.
Among them, semi-empirical methods have played (and still play) a very im-
portant role since they allow us to simulate the true energy bands in terms
of a restricted number of adjustable parameters. There are essentially three
distinct methods of achieving this goal : the empirical tight binding (ETB)
approximation, the empirical pseudopotential method (EPM) and the k - p
approximation which, in its simple form, is equivalent to the effective mass
approximation (EMA).
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1.3.1 The Empirical Tight Binding Method

The Basis of the Empirical Tight Binding Method. In this approx-
imation, the wave function is written as a combination of localized orbitals
centered on each atom,

V=" Ciatia » (1.143)
(e

where ¢, is the ot? free atom orbital of atom 4, at position R;. As each
complete set of such orbitals belonging to any given atom forms a basis
for the Hilbert space, the whole set of ¢;, is complete, i.e., the ¢;, are no
longer independent and (1.143) can yield the exact wave function of the whole
system. In practice one has to truncate the sum of over « in this expansion.
In many simplified calculations it has been assumed that the valence states
of the system can be described in terms of a minimal basis set which only
includes free atom states belonging to the outer shell of the free atom (e.g. 2s
and 2p in diamond). 1t is that description which provides the most appealing
physical picture, allowing us to clearly understand the formation of bands
from the atomic limit. The minimal basis set approximation is also used in
most semi-empirical calculations.

When the sum over « in (1.143) is limited to a finite number, the energy
levels € of the whole system are given by the secular equation

det |H — e8] =0, (1.144)

where H is the Hamiltonian matrix in the atomic basis and S the overlap
matrix of elements:

Sia,ig = (Pialeis) - (1.145)

These matrix elements can be readily calculated, especially in the local
density theory, and when making use of Gaussian atomic orbitals. The prob-
lem, as in the plane wave expansion, is to determine the number of basis
states required for good numerical accuracy.

An interesting discussion on the validity of the use of a minimal basis set
has been given by Louie [52]. Starting from the minimal basis set |¢;q), one
can increase the size of the basis set by adding other atomic states |x;,), called
the peripheral states, which must lead to an improvement in the description
of the energy levels and wave functions. However, this will rapidly lead to
problems related to over-completeness, i.e., the overlap of different atomic
states will become more and more important. To overcome this difficulty,
Louie proposes three steps to justify the use of a minimum basis set. These
are the following :

— Symmetrically orthogonalize the states |¢;,) belonging to the minimal ba-
sis set between themselves. This leads to an orthogonal set [,,).
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— The peripheral states |x;,) overlap strongly with the [g,,). It is thus nec-
essary to orthogonalize them to these [;,), which yield new states [X;,)
defined as:

Xin) = IXin) = Z (@0 ) (BjalXin) - (1.146)

— The new states |X;,) are then orthogonalized between themselves leading
to a final set of states [x;,,).

Louie has shown that, at least for silicon, the average energies of these
atomic states behave in such a way that, after the three steps, the peripheral
states [X;,) are much higher in energy and their coupling to the minimal
set is reduced. They only have a small (although not negligible) influence,
justifying the use of the minimal set as the essential step in the calculation.

The quantitative value of LCAO (linear combination of atomic orbitals)
techniques for covalent systems such as diamond and silicon was first demon-
strated by Chaney et al. [53]. They have shown that the minimal basis set
gives good results for the valence bands and slightly poorer (but still mean-
ingful) results for the lower conduction bands. Such conclusions have been
confirmed by several groups [52,54,55] who worked with pseudopotentials
instead of true atomic potentials.

The great interest of the minimal basis set LCAQO calculations is that
they provide a direct connection between the valence states of the system
and the free atom states. This becomes still more apparent with the ETB
approximation which we shall later discuss and which allows us to obtain
extremely simple, physically sound descriptions of many systems.

ETB can be understood as an approximate version of the LCAO theory.
It is generally defined as the use of a minimal atomic basis set neglecting
inter-atomic overlaps, i.e., the overlap matrix defined in (1.145) is equal to
the unit matrix. The secular equation thus becomes

det|/H — eI =0, (1.147)

where I is the unit matrix. The resolution of the problem then requires the
knowledge of the Hamiltonian matrix elements. In the ETB these are obtained
from a fit to the bulk band structure. For this, one always truncates the
Hamiltonian matrix in real space, i.e., one only includes inter-atomic terms up
to first, second, or, at most, third nearest neighbors. Also, in most cases one
makes use of a two-center approximation as discussed by Slater and Koster
[56]. In such a case, all Hamiltonian matrix elements (@;o|H|p;g) can be
reduced to a limited number of independent terms which we can call H,g(3, §)
for the pair of atoms (7,7) and the orbitals (o, ). On an s,p basis, valid for
group IV, III-V, and I1-VI semiconductors, symmetry considerations applied
to the two-center approximation only give the following independent terms

[56]
Haﬁ(iaj) = Hsso'(i7j)7 HSDU(i7j)7 HSPO'(jv 7’)7 pro’(i,j)v prﬂ(i?j) ? (1148)
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O O O oo

Hsso Hspo
Fig. 1.5. Indepen-
N " . N O + +O dent terms of the
CoOCHOH COD Hppr tight binding Hamil-
O- O tonian between s and
Hppo p orbitals

where s stands for the s orbital, o the p orbital along axis ¢, j with the positive
lobe in the direction of the neighboring atom, and 7 a p orbital perpendicular
to the axis 4,7 (Fig. 1.5). Hy,~(2,]) is strictly zero in two-center approxima-
tion. With these conventions all matrix elements are generally negative.

Similar considerations apply to transition metals with s, p and d orbitals.
Simple rules obtained for the H, (3, j) in a nearest neighbor’s approximation
are given by Harrison [57]. They are based on the use of free atom energies for
the diagonal elements of the tight binding Hamiltonian. On the other hand,
the nearest neighbor’s interactions are taken to scale like d=2 (where d is the
inter-atomic distance) as determined from the free electron picture of these
materials. For s, p systems, this gives numerically (in eV)

10.67 14.02
Hssaz‘-‘c’p— ; Hspcf:_T ;
24.69 6.17
prg = —*dQ—' 3 prﬂ- - —? ) (1149)

where d is expressed in A.

Viewed as an approximation of LCAO theory, ETB must in principle lead
to incorrect energy eigenvalues. For instance the direct neglect of inter-atomic
overlaps in (1.144) leads to band structures which are in general narrower
than the corresponding LCAO one provided the same Hamiltonian H is used.
However one can obtain a simple secular equation like (1.147) in various ways.
One of them is to symmetrically orthogonalize the basis set as in Louie’s
procedure described above. A popular way to achieve this is to use Lowdin’s
procedure [58] in which the orthogonalized basis is defined as

[Bia) = (S7%10))icc - (1.150)
This allows to rewrite (1.144) under the following form
det |S~V2HS™V? —cl| =0, (1.151)

formally equivalent to the ETB (1.147). As discussed above, in the semi-
empirical procedures the parameters are determined from a fit to known
band structures which has allowed empirical rules like those of (1.149) to be
established. However care must be taken when transferring such parameters
from the known bulk situation to other cases like point defect problems for
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instance. The most obvious case is the vacancy where one simply removes
the atom. To describe this correctly one cannot in principle suppress only
the matrix elements of S™'/2HS~1/2 connected to the missing atom but
one should also take into account the change in the matrix S induced by
the defect. This point is usually ignored in the ETB calculations of such
problems.

Description of Bulk Semiconductors. The parameters discussed above
in (1.149) nicely reproduce the valence bands of zinc-blende semiconductors
but poorly describe the band gap and the conduction bands. Improvements on
this description have been attempted by going to the second nearest neighbors
[59] or by keeping the nearest neighbors treatment as it is but adding one
s orbital (labeled s*) to the minimal basis set [60]. The role of this latter
orbital is to simulate the effect of higher energy d orbitals which have been
shown to be essential for a correct simulation of the conduction band. The
quality of such a fit can be judged from Figs. 1.6 and 1.7, which show that
the lowest conduction bands are reproduced much more correctly than with
only first-nearest neighbor sp® model.

E (eV)

E (eV)

Fig. 1.6. Band structure of silicon. Left: first nearest neighbour ETB [61]; right:
sp3s* Vogl’s ETB [60]. GW band structure [65] (dashed line)

L ——

E (V)

Fig. 1.7. Band structure of silicon. Left: second nearest neighbor ETB [59]; right:
third nearest neighbor ETB [64]. GW band structure [65] (dashed line)
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Although ETB seems in general inferior to the empirical pseudopotential
method [62] to obtain accurate valence and conduction bands with a small
number of parameters substantial progress has been achieved over the years.
For instance, a recent sp® ETB model [63] including up to third nearest
neighbors interactions and three center integrals has been shown to provide
an excellent fit to the silicon band structure both for the valence and the four
lower conduction bands. However, as other previous empirical fits, this model
is less good in describing the curvature of the bands near their extrema.
For instance it provides a Luttinger parameter vy =1.233 (see Sect. 1.3.3)
instead of 0.320 experimentally and a transverse effective mass m; = 0.567
instead of 0.191. As a correct description of these parameters is essential to
an application to quantum dots, we have recently [64] used the same method
but we have obtained the parameters by minimizing the error on a weighted
average of bulk band energies and effective masses taken from an ab initio GW
calculation [65]. The corresponding results are given on Fig. 1.7 and Table 1.1.
Such a good fit can also be obtained with a first-nearest neighbor sp3d®s*
model [66] which is also successful for III-V compound semiconductors with
the same degree of accuracy.

Table 1.1. Third nearest neighbors ETB parameters for silicon and first nearest
neighbors ETB parameters for Si-H. Neighbour positions are given in units of a/4.
A is the spin—orbit coupling parameter

Si ETB parameters :

Es[000] —6.17334 eV Es,[111] —1.78516 eV

E,p[000] 2.39585 ¢V E.[111] 0.78088 eV
E.[111]  0.35657 eV
A 0.04500 eV E,y[111] 1.47649 eV

Ess[220]  0.23010 eV E.,[311] —0.06857 eV
E.s[220] —0.21608 ¢V E,,[311] 0.25209 eV
Fs2[022] —0.02496 eV E.[113] —0.17098 eV
Em [220] 0.02286 ¢V E,.[311] 0.13968 eV
Fre[022] —0.24379 eV E,,[113] —0.04580 eV
E.y[220] —0.05462 €V E,,[311] —0.03625 eV
E.,[022) —0.12754 €V E,,[113] 0.06921 eV

Si-H ETB parameters :

By 0.17538 eV Vssa —4.12855 eV
Vepo 3.72296 eV

Total Energies in Tight Binding. Up to now we have discussed how it
is possible to get one particle eigenstates, obtained by diagonalization of the
tight binding matrix. However it is also possible to derive an empirical tech-
nique which allows a determination of total energies. For this let us consider
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the simpler case of a nearest-neighbor approximation. One then assumes that
all independent nearest neighbors H,s(4, j) vary in the same way as functions
of the inter-atomic distance R;;, for instance as

Hop(Rij) = Hgg exp(—qRi;) , (1.152)

or also like some inverse power of R;;, see [57]. Then, by summing over the
energies of filled states, one can obtain the band structure energy Epg as a
function of the atomic positions. This band structure energy has an attractive
character. To determine the crystal stability it is necessary to add a repulsive
part corresponding to terms which have been neglected or counted twice in
Egg. In a non self-consistent scheme such terms correspond to the repulsion of
neutral atoms [67]. They are short-ranged and we can simulate them simply
by Born—Mayer pair potentials:

V(Rij) = Voexp(—pRij) . (1.153)

The parameters p, ¢ and Vj are obtained empirically from a fit to the ob-
served cohesive energy, lattice parameter and compressibility. They can then
be used to calculate phonon dispersion curves and relaxation or reconstruc-
tion energies near defects or surfaces. This technique has been applied with
much success in transition metals [68] as well as in sp bonded semiconductors
[67]. When applied to silicon for instance, in its simplest version where the
electronic part is treated in the molecular or bond orbital model, it provides
a natural justification to the well known Keating Hamiltonian for vibrations
[67). It was also shown that a refinement of the technique leads to a quite
good description of the phonon dispersion curves [69, 70].

The empirical laws (1.152) and (1.153) have been generalized to allow
more quantitative ETB simulations of total energies versus local environment
especially for transition metals and covalent semiconductors. A summary of
the present state of the art in this field can be found in [71].

Screening in ETB. One can perform quite eflicient calculations of screening
in ETB for systems which cannot be handled by ab initio methods, e.g. for
clusters with size larger than =~ 1 nm. The basic assumption is the neglect of
differential overlap used long time ago for the description of molecules [72].
It corresponds to the fact that Coulomb integrals of the type (1.15) in a basis
of atomic orbitals ¢;, (i = atom index, o = orbital index) follow the rule

(icv, 1Blvlky,16) = (i, jB|v]ic, Jﬂ> io,ky 058,15
/ (i ) [l Prdr i by
(1.154)

The remaining Coulomb integrals are usually simplified to

2
2 / T IY
io( drdr’ =v;,; =—ifi#j,
=Uifi=j5, (1.155)
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which do not depend on the orbital labels o and 3 but only on the atomic
index. U?' is an intra-atomic Coulomb energy which can be calculated from
atomic wave functions. The expression of the electron density n(r) can be
simplified to

n(r) =D nialpia(r)l?, (1.156)

since we discard overlaps in Coulomb terms, n;, being the electron population
of orbital ¢;,. We now look at what happens to the basic relation of static
screening described by (1.56)

W(r,r"y=v(r,r) + /v(r,r") Snina(r”, v )dr” (1.157)

corresponding to the potential created at r by an electronic test charge at 7’.
In the ETB view, the test charge must be located on atom 7, i.e. distributed
on the | o (r)|2. Multiplying (1.157) by this distribution and integrating over
r’ we get:

W(r,R;) =v(r,R;) + /v(’r,r”) Snina(r”, R;)dr” . (1.158)

We now expand dn;yq as in (1.156) to get:

W(r,R;) = v(r,R;) + Y _v(r, Ry) onp(R;) . (1.159)
k

The final step is just to multiply by |;q(r)|? and integrate over = which
gives

Wij = ’Uij + Z’Uik 5nkj . (1160)
k

This means that the continuous equation (1.157) has now been discretized
over the atoms replacing integral equations by products of matrices. We can
now linearize the dny; with respect to the W, in terms of a polarizability
matrix x

5nkj = ZXHVVU s (1161)
l
. g — N * *
Xij = 2; €k — Ep —w — 10 (; Ck,iack/,ia) (; Ck,jack’,ja> s

which is an obvious transposition. The whole formulation is now in terms of
matrices and one can write as usual W = ¢ 'v, ¢ = I — vx now requiring
matrix multiplication and inversion. The enormous advantage is that the size
of the matrices is N x N, N being the number of atoms. This can be applied
to pretty large systems as will be shown by the GW calculations performed
in this way for nanocrystals (Sect. 4.4).
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1.3.2 The Empirical Pseudopotential Method

The full atomic potentials produce strong divergences at the atomic sites in
the solid. These divergences are related to the fact that these potentials must
produce the atomic core states as well as the valence states. However, the core
states are likely to be quite similar to what they are in the free atom. Thus
the use of the full atomic potentials in a band calculation is likely to lead to
unnecessary computational complexity since the basis states will have to be
chosen in such a way that they describe localized states and extended states
at the same time. Therefore, it is of much interest to devise a method which
allows us to eliminate the core states, focusing only on the valence states of
interest which are easier to describe. This is the basis of the pseudopotential
theory.

The pseudopotential concept started with the orthogonalized plane wave
theory [73]. Writing the crystal Schrodinger equation for the valence states

(T +V)|¥) = E|¥) (1.162)

one has to recognize that the eigenstate |¥) is automatically orthogonal to the
core states |c) produced by the same potential V. This means that |¥) will be
strongly oscillating in the neighborhood of each atomic core, which prevents
its expansion in terms of smoothly varying functions, like plane waves, for
instance. It is thus interesting to perform the transformation

@) =(1-Plo), (1.163)

where P is the projector onto the core states
P=>Y"le)c. (1.164)

|&) is thus automatically orthogonal to the core states and the new un-
known |p) does not have to satisfy the orthogonality requirement. The equa-
tion for the pseudo-state ) is:

(T+ VY1~ P)lg)y=E(1—Ple). (1.165)

Because the core states |c) are eigenstates of the Hamiltonian T'+ V' with
energy E., one can rewrite (1.165) in the form

T+V+Y (E-E)le)el| o) = Elo) - (1.166)

The pseudo-wave function is then solution of a Schrodinger equation with
the same energy eigenvalue as |¥). This new equation is obtained by replacing
the potential V by a pseudopotential

Ves =V + Z(E — Eo)le){c| . (1.167)
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This is a complex non-local operator. Furthermore, it is not unique since
one can add any linear combination of core states to |¢) in (1.166) without
changing the eigenvalues. There is a corresponding non-uniqueness in Vi
since the modified |¢) will obey a new equation with another pseudopoten-
tial. This non-uniqueness in V is an interesting factor since it can then be
optimized to provide the smoothest possible |¢), allowing rapid convergence
of plane wave expansions for |p). This will be used directly in the empirical
pseudopotential method.

First-principle pseudopotentials have been derived for use in quantitative
calculations [74]. First of all, they are ion pseudopotentials and not total
pseudopotentials as those discussed above. They are deduced from free atom
calculations and have the following desirable properties:

— real and pseudo-valence eigenvalues agree for a chosen prototype atomic
configuration

— real and pseudo-atomic wave functions agree beyond a chosen core radius
Te

— total integrated charges (norm conservation)

— logarithmic derivatives of the real and pseudo wave functions and their
first energy derivatives agree for r > r.

These properties are crucial to have optimum transferability of the
pseudopotential among a variety of chemical environments, allowing self-
consistent calculations of a meaningful pseudo-charge density.

Let us now discuss the empirical pseudopotential method (EPM) which
consists in a plane wave expansion of the wave function plus the use of a
smooth pseudopotential. In EPM one assumes that the self-consistent crystal
pseudopotential can be written as a sum of atomic contributions, i.e.,

V(r)= Zva(r—Rj —Ta), (1.168)

where j runs over the unit cells positioned at R; and « is the atom index, the
atomic position within the unit cell being given by 7. Let us first assume
that the v, are ordinary functions of r, or, in other words, that we are
dealing with local pseudopotentials. In that case the matrix elements of V
between plane waves become

1 - .
(k+GlVk+G') = 0 Ze‘(G —G)ra /va(r)el(G Grar (1.169)

where {2 is the volume of the unit cell. Suppose that there can be identical
atoms in the unit cell. Then the sum over & can be expressed as a sum over
groups (3 of identical atoms with position specified by a second index « (i.e.
ro = Tg). Calling n the number of atoms in the unit cell we can write

(k+G|VIk+G') =) S3(G' - Gva(G' - G), (1.170)
B
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where S5 and vg are, respectively, the structure and form factors of the
corresponding atomic species, defined by

S5(@) = % D elGms (1.171)
v
and
v(G) = %/vg(r)eic'rdr . (1.172)

In practice, EPM treats the form factors v3(G) as disposable parameters.
In the case where vg(r) are smooth potentials their transforms vs(G) will
rapidly decay as a function of |G| so that it may be a good approximation to
truncate them at a maximum value G.. For instance, the band structure of
tetrahedral covalent semiconductors like Si can be fairly well reproduced using
only the three lower Fourier component v(|G|) of the atomic pseudopotential.
There are thus two cut-off values for |G| to be used in practice: one, Gy,
limits the number of plane waves and thus the size of the Hamiltonian matrix;
the other one, G, limits the number of Fourier components of the form
factors. We shall later give some practical examples.

The use of a local pseudopotential is not fully justified since, from (1.166),
it involves, in principle, projection operators. It can be approximately jus-
tified for systems with s and p electrons. However, when d states become
important, e.g. in the conduction band of semiconductors, it is necessary to
use an operator form with a projection operator on the 1-2 angular compo-
nents.

Let us now discuss the application of EPM to purely covalent materials
like silicon or germanium. The basis vectors of the direct zinc—blende lattice
are a/2 x (110), a/2 x (011) and a/2 x (101). The corresponding basis vectors
of the reciprocal lattice are 27/a x (111), 27 /a x (111) and 27 /a x (111). The
reciprocal lattice vectors G which have the lowest square modulus are given
in Table 1.2.

Table 1.2. Reciprocal lattice vectors G with the lowest modulus in the case of a
zinc-blende lattice

000

200
220
311 11
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For elemental materials like Si and Ge there is only one form factor v(G)
but we have seen in (1.170) that the matrix element of the potential involves
a structure factor which is given here by

S(G) =cos(G-T1), (1.173)

where the origin of the unit cell has been taken at the center of a bond
in the (111) direction and where 7 is thus the vector a/8(111). For local
pseudopotentials this matrix element (k+ G|V |k + G’) can be written V(G)
and is thus given by:

V(G) =v(G)cos(G - T) . (1.174)

The structure factor part is of importance since, among the lowest values
of |G| quoted in Table 1.2, it gives zero for 27/a(200). If one indexes V(G)
by the value taken by the quantity (a/27)2G?, then only the values V3, Vg
and Vi, are different from zero. It has been shown [75] that the inclusion
of these three parameters alone allows to obtain a satisfactory description
of the band structure of Si and Ge. This can be understood simply by the
consideration of the free electron band structure of these materials which is
obtained by neglecting the potential in the matrix elements of the Hamilto-
nian between plane waves. The eigenvalues are thus the free electron energies
h%|k + G|?/2mq which, in the fcc lattice, lead to the energy bands plotted
in Fig. 1.8. The similarity is striking, showing that the free electron band
structure provides a meaningful starting point.

The formation of gaps in this band structure can be easily understood at
least in situations where only two free electron branches cross. To the lowest
order in perturbation theory, one will have to solve the 2 x 2 matrix

2
slk+G* V(G -G) (1.175)
V(G - G)* folk+G'P?

Fig. 1.8. Correspondence between free-electron (right) and empirical pseudopoten-
tial (left) [76] bands, showing how the degeneracies are lifted by the pseudopotential.
GW calculation [65] (dashed line)
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E(k)
£y

Fig. 1.9. Opening of a gap
T in the nearly free electron
2VG'-G) | | method. The two free electron
e branches (dashed line) are
— e split by the potential Fourier
component (straight line)

The resulting eigenvalues are
h? [|k + G+ |k + G’F]
2

E(k) = 5g

i\/( 2 |k+G'|2—|k+G|2>2+|V(GuG)|2 (1.176)

2m0 2

whose behavior as a function of k is pictured in Fig. 1.9. The conclusion is
that there is formation of a gap at the crossing point equal to 2|V (G’ — G)]|.
Note that for this to occur the crossing point at £ = ~(G’ + G)/2 must lie
within the first Brillouin zone or at its boundaries. For points where several
branches cross, one will have a higher order matrix to diagonalize but this will
generally also result in the formation of gaps. This explains the differences
between the free electron band structure and the actual one in Fig. 1.8.

The number of parameters required for fitting the band structures of com-
pounds is different in view of the fact that there are now two different atoms
in the unit cell with form factors vA(G) and vg(G). The matrix elements
V(G) of the total pseudopotential will thus be expressed as

V(G) =V*(G)cos(G - T) +iVHG)sin(G - 1) , (1.177)

where V® and V? are equal to (va + vg)/2 and (va — vg)/2, respectively.
The number of fitting parameters is then multiplied by 2, the symmetric
components V3, Vg, and V| being close to those of the covalent materials and
the antisymmetric components being Vi, V# and V3 since the antisymmetric
part of Vg vanishes.

1.3.3 The k - p Description and Effective Masses

The concept of effective masses near a band extremum is very powerful to
describe hydrogenic impurities in semiconductors [77]. This will prove still
more important for heterostructures and nanostructures that we discuss in
the next chapter. In any case it is highly desirable to provide a general frame-
work to analyze this problem. This is obtained directly via the k - p method
which we present in this section.
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The basis of the method is to take advantage of the crystalline structure
which allows us to express the eigenfunctions as Bloch functions and to write
a Schrodinger-like equation for its periodic part. We start from

2m0

where we have written the wave function in Bloch form. We can rewrite this
in the following form

{ﬁ + V} e*Tug(r) = E(k)e® Tug(r) (1.178)

{(”—2?)'“—)2 + V} ur(r) = E(k)un(r) (1.179)

which is totally equivalent to the first form. To solve this, we can expand the
unknown periodic part ug(r) on the basis of the corresponding solutions at
a given pointy ko, which we label up g, (7):

uk(r) =Y cn(k)tn ko (T) - (1.180)

The corresponding solutions are the eigenstates and eigenvalues of the
matrix with the general element

2
An,n’(k) = <un,k0 M un’,k0> . (1181)

2m0
We now use the fact that u, g, is an eigenfunction of (1.179) for k = kq,
with energy F, (ko). This allows us to rewrite (1.181) in the simpler form

+V

K2 9
Ap (k) = {En(ko) + Z—%(k — ko) } On,n
hk —k
+(—Qpnnf(ko) ; (1.182)
Mo
with
Prnt (ko) = (Un ko |P|tn’ ko) - (1.183)

Diagonalization of the matrix A(k) given by (1.182) can give the exact
band structure (an example of this is given in [78]). However, the power
of the method is that it represents the most natural starting point for a
perturbation expansion. Let us illustrate this first for the particular case of
a single non-degenerate extremum. We thus consider a given non-degenerate
energy branch F,, (k) which has an extremum at k = ko and look at its value
for k close to ko. The last term in (1.182) can then be considered as a small
perturbation and we determine the difference E,, (k) — E.,, (ko) by second order
perturbation theory applied to the matrix A(k). This gives

2

E.(k) = E,(ko) (k — ko)?

" 2mo
12 > [(k = ko) - Prw] [(k — ko) - Prn]

+— y
(2) n'#n E, (kO) - En’ (kO)

(1.184)
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which is the second order expansion near kg leading to the definition of the
effective masses. The last term in (1.184) is a tensor. Calling O« its principal
axes, one gets the general expression for the effective masses m}:

mo 2 | (pa)nn’ |2

=1 4+ — .
my, mo . En(ko) - Enl(ko)

(1.185)
n

This shows that when the situation practically reduces to two interacting
bands, the upper one has positive effective masses while the opposite is true
for the lower one. This is what happens at the I' point for GaAs, for instance.

Another very important situation is the case of degenerate extremum at
the top of the valence band in zinc-blende materials which occurs at k = 0.
For k = 0, the last term of (1.182) can still be treated by the second order
perturbation theory. By letting ¢ and j be two members of the degenerate
set at k = 0 and [ any other state distant in energy, we now must apply
the second order perturbation theory on a degenerate state. As shown in
standard textbooks [79], this leads to diagonalization of a matrix

2 kz} k2 (k- pu) (k- pij)
0

8ij + Z 2= )~ Bal0) (1.186)

APk = |E;(0) + —
Ok) = | B:0) + 5~

The top of the valence band has threefold degeneracy and its basis states
behave like atomic p states in cubic symmetry (i.e. like the simple functions
z, y, and z). The second order perturbation matrix is thus a 3 x 3 matrix

built from the last term in (1.186) which, from symmetry, can be reduced to
[80-83]

LK2 + M (k% +k2) Nkyk, Nkyk,
Nkyk, Lk2 + M (K2 + k2) Nkyk, , (1.187)
Nkk, Nkyk, Lk2 + M(K2 + k2)

where L, M, and N are three real numbers, all of the form:

B (k-pu) (k- py)

mf 4= E(0) - Ei(0)

(1.188)

It is this matrix plus the term A2k2/(2my) on its diagonal which define
the matrix to be applied in effective mass theory to a degenerate state. Up
to this point we have not included spin effects and in particular spin orbit
coupling, which plays an important role in systems with heavier elements.
If we add the spin variable, the degeneracy at the top of the valence band
is double and the k - p matrix becomes a 6 X 6 matrix whose detailed form
can be found in [84-86] and is given in Sect. 2.2.1. One can slightly simplify
its diagonalization when the spin orbit coupling becomes large, from the fact
that

L-S=(J*-1*-58%)2, (1.189)
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where J = L + S. Because here L = 1 and S = 1/2, J can take two values
J =3/2 and J = 1/2. From (1.189), the J = 3/2 states will lie at higher
energy than the J = 1/2 ones and, if the spin orbit coupling constant is large
enough, these states can be treated separately. The top of the valence band
will then be described by the J = 3/2 states leading to a 4 x 4 matrix whose
equivalent Hamiltonian has been shown by Luttinger and Kohn [87] to be

K2 5 k2
H= — 1) T ey kAT
mo {(71 + 2'72) 2 72 ~ ka']a

Jodg + Jgdo
~8 Y kakp S (1.190)
a#B

where «, § =z, y or 2.

Finally, as shown by Kane [80, 81], it can be interesting to treat the bottom
of the conduction band and the top of the valence band at k = 0 as a quasi-
degenerate system, extending the above described method to a full 8 x 8
matrix which can be reduced to a 6 x 6 one if the spin orbit coupling is large
enough to neglect the lower valence band.



2 Quantum Confined Systems

The electronic structure of bulk semiconductors is characterized by delocal-
ized electronic states and by a quasi continuous spectrum of energies in the
conduction and valence bands. In semiconductor nanostructures, when the
electrons are confined in small regions of space in the range of a few tens
of nanometers or below, the energy spectrum is profoundly affected by the
confinement, with in particular:

— an increase of the width of the bandgap
— the allowed energies become discrete in zero-dimensional (0D) systems and
form mini-bands in 1D and 2D systems.

Quantum confinement effects are present in a wide range of systems, e.g.
in quantum wells, wires or dots grown by advanced epitaxial techniques, in
nanocrystals produced by chemical methods or by ion implantation, or in
nanodevices made by state-of-the-art lithographic techniques. This chapter
is devoted to the calculation of quantum confinement effects. We begin with
a simplified description based on the effective mass approximation (EMA).
Then we describe more elaborate methods which allow to get accurate re-
sults. We present the results of tight binding calculations on nanostructures
of direct and indirect bandgap semiconductors. We compare with the predic-
tions of other methods described in Chap. 1, discussing the advantages and
the limits of each one. We also provide analytic expressions for the confine-
ment energies in a large number of semiconductor nanocrystals. Finally, we
consider the case of amorphous silicon clusters, to emphasize the interplay
between disorder and confinement effects.

2.1 Quantum Confinement and Its Consequences

In this section we describe the effects of the quantum confinement in idealized
nanostructures using simplified treatments mainly based on the EMA.

2.1.1 Idealized Quantum Wells

We discuss here the case of square quantum wells, such as those grown
by epitaxial techniques. We consider a well made of a semiconductor 1
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(-=L,/2 < z < L,/2) sandwiched between barrier layers of material II such
as the electrons or the holes are confined in the well. Basically, a common
way to achieve this is to use for material II a semiconductor or an insulator
with a bandgap much larger than in the well. The quantum mechanical de-
scription of quantum wells is considerably simplified using the fact that the
carriers experience a potential which is almost identical to that of perfect
materials I and II in the well and the barriers, respectively. The difference
between the potential in the barrier and in the well defines the confining
potential Vione(r) which is commonly approximated by a square potential
only depending on the coordinate z (Fig. 2.1). Within this approximation,
the calculation of the lowest electronic states or of the highest hole states
has been extensively done using the envelope function approach [86,88,89),
i.e. using k- p or EMA (Chap. 1). A basic assumption in these treatments is
that the confining potential does not mix the wave functions from different
bands, except those which are degenerate. In the simplest case of conduction
band states in direct gap semiconductors like GaAs or InP, it can be shown
[86,90] that the electron wave function takes approximately the form

U(r) =ug (r)g(r) (2.1)

where u}c’;l is the Bloch wave function at the minimum of the conduction band
in the material I or IT. ¢(7) is an envelope function solution of a Schrédinger-
like equation

h2

(- A4 Veus(2) ) 01r) = 20 (22)
m

where m* is the conduction band effective mass which in principle is material

dependent. The origin of the energy corresponds to the bottom of the conduc-

tion band of material I. The eigenfunctions are separable in x, y, z directions

V= \e‘t]
|
= |
2 |
z 5
E)
g | S
o ///" "‘m\
- \\\
Fig. 2.1. Potential profile and low-
. | v—o est envelope functions x1(z) (straight
_Lp 0 Lo line) and x2(z) (dashed line) in an in-

finite square well (Vo — 00)
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because V on¢ only depends on z. Thus the solutions of the Schrédinger equa-
tion have the following form

h2k?
2m*

brn(r) = %e”’”“’xn(@ : (2.3)

where k = (k;, ky), k = |k|, p = (z,y), S = Ly L, is the sample area and n
is an integer. The electrons are free to propagate in the z and y directions.
The functions x,(2) are solutions of the 1D equation in the z direction

z
Ekn = +€",

R 92
<—%@ + Vconf(Z)> xn(2) = €5 xn(2) . (2.4)
The solutions x,(z) are bound states if €% is smaller than the potential

in the barriers and is unbound otherwise [86]. The resolution of (2.4) further
requires continuity conditions at the interfaces. One usually imposes that
xn(z) and (1/m*)(0xn(2)/d2) must be continuous. The condition of conti-
nuity of (1/m*)(0xn(z)/0z) is required by the conservation of the particle
current. If the confining potential is large in the barriers, the problem for the
lowest states can be approximated by the simpler one of an infinite square
well

‘/Conf(z) =0if _Lz/2 <z< Lz/2a
Veont(2) — o0 otherwise , (2.5)

and the solutions are
B B2 [nm\’
gl = -,
"o 2m* \ L,
(z) = 2 sin [ —2 ) for even n
XniZ) = L. L. )
(2) = /2 cos [ "™2) for odd (2.6)
Xn(2) = I cos | - n. .

The quantity h2m2/(2m*L?) is equal to ~ 150 meV with L, = 100 A
and m* = 0.lmg. Equation (2.3) shows that the 2D confinement leads to
the formation of subbands at each energy €?, the energy A%k*/(2m*) in a
subband corresponding to the kinetic energy for the in-plane motion of the
carrier. The effect of the confinement on the electronic structure is evidenced
in the density of states psp(g), i.e. the number of allowed states per unit
energy around a given energy ¢. Using (2.3), we obtain

R2 k2
pap(e) = 2 Z 5[5“52— },

2m*
ke, ky,n

(2.7)
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where the factor 2 stands for the spin degeneracy. Applying cyclic boundary
conditions in the z and y directions, we have

2m 2
The summation over k, k, in (2.7) can be converted to an integration
and finally

m

W;Q S 6 —cz), (2.9)

p2n(e) =

where ©(z) is the step function (= 1 if z > 0, = 0 otherwise). Thus the
density of states in a 2D system is a staircase function (Fig. 2.2), with a
discontinuity at each energy %, whereas at 3D it is a continuous function of
the energy

m*2 [2m*
p3p(€) = o) F‘ga (2.10)

where §2 is the volume of the system. On Fig. 2.2, we compare psp calculated
for an infinite square well using the energies given in (2.6) with p3p calculated
for the same volume of material (2 = L,S). When going from 3D to 2D,
the density of states is reorganized into steps. In particular, pop(e) = 0
for € < £% in contrast to psp(e). With a similar situation for holes (but the
calculation of the eigenstates is more complex in the valence band), we deduce
an important consequence of the confinement: the width of the bandgap is
increased compared to the bulk. In EMA, the confinement energy, i.e. the
difference between the gap at 2D and 3D is proportional to 1/L%. A large
number of physical properties are altered by the 2D confinement (see for
example reviews [86,91]). Among them, it is worth noticing : the blue-shift
of the photoluminescence energy and of the optical absorption threshold in

Fig. 2.2. Density of
states for an infinite
square well (straight
line) of width L, and
of area S compared
to the one for the
bulk material (dashed
line) with the same

! ' : : volume 2 = SL, (L.
0 0.2 0.4 0.6 0.8 1 = 100 A’ m* = 0.1
Energy (eV) mg)

Density of states (arb. units)

O = N W OO O N XX ©
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quantum wells compared to the bulk semiconductor. It is also important
to point out that the 2D density of states is finite at the bottom of the
lowest subband whereas the 3D one is equal to zero, which has fundamental
consequences on the properties of 2D systems, for example for the gain of
semiconductor quantum well lasers [92].

2.1.2 Idealized Quantum Wires

In wires, the confinement now takes place in two directions of space (e.g. z,
y) and the carrier motion is free in the other direction (2). Using a square
potential for Voone(,y), i.e. in the form of Fig. 2.1 along z and y, the problem
is once again separable into three 1D equations and the solutions become

h2k2 . ’
gknzny = 2n* + gnz + £_:"y ’

S, () = jL_x (@)xm, (4) - (2.11)

In the case of an infinite square potential, x,, () and xn,(y) are given in
(2.6), corresponding to bound states along z and y. The term A%k2/(2m*) is
the kinetic energy for the motion of the carrier along the wire axis. Following
the same approach as for wells, we derive the density of states for a wire of
length L,:

L, [2m* z _
pin(e) = ?\/—hy(e—snz —e¥ )72 (2.12)

The density of states is equal to zero when € < €7 +&Y. Thus, the quantum
confinement leads to an opening of the band gap like in 2D systems but the 1D
density of states is highly peaked, since it presents singularities at each value
of €7 + ¥ (Fig. 2.3). The 1D subbands are often referred to as channels, in
particular when discussing transport properties of quantum wires (Chap. 8).

[ .

2D oD

3D

£ €

Fig. 2.3. Comparison between the density of states at 3D, 2D, 1D and 0D
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This description of the electronic structure of quantum wires is based on a
picture of non interacting electrons, which is certainly true for semiconducting
wires. However, in metallic wires, or in semiconducting wires with a high level
of doping, electron—electron interactions play an important role in contrast
to 3D metals where electron—electron interactions are strongly screened and
where the Landau’s Fermi liquid theory gives a phenomenological description
of these systems in terms of the non interacting Fermi gas. In purely 1D
electron gas (without lateral dimensions) this theory breaks down because
the one-dimensionality restricts the screening of Coulomb interactions. 1D
metals are usually described as Luttinger liquids [93,94] where excitations
of the system correspond to collective motions of the electrons. The physics
of one-dimensional interacting fermions is presently a very active field of
research, in particular due to the fact that good metallic wires are now easily
available for experiments (e.g. carbon nanotubes).

2.1.3 Idealized Cubic Quantum Dots

In quantum dots, the confinement takes place in the three directions of space.
The main consequence is that the electronic spectrum consists in series of
discrete levels, like in isolated atoms. In the simplest case of a square potential
like in Fig. 2.1 along z, y and z axes, we easily derive the eigenvalues and
eigenstates of the EMA equation:

.z y z
Enznynz - Enz + Sny + Enz ?

Granyne (1) = Xn, (T)Xn, (¥)Xn. (2) - (2.13)

The density of states consists of ¢ functions at the discrete energies:

pop(e) =2 Z 0(e = €ngnyn,) - (2.14)
T My, Ny

In the case of an infinite square potential, we have:

R | (ng\? (n,\° [n:)

In a cubic dot (L, = Ly = L), the ground state of the system €111 has
a twofold degeneracy (including spin) and the first excited level (€211, €121,
€112) is sixfold degenerate. Interestingly, we recover the situation of an atom
with twofold degenerate S state and sixfold degenerate P state. Thus quantum
dots are often referred to as artificial atoms. Since the electronic structure
of these artificial atoms can be tuned by changing their size or their shape,
quantum dots are particularly attractive building blocks for the development
of nanotechnologies.
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2.1.4 Artificial Atoms: Case of Spherical Wells

The similarity between quantum dots and isolated atoms becomes particu-
larly striking in the case of spherical quantum dots, i.e. when the confining
potential has a spherical symmetry. For example, nanocrystals in semicon-
ductor doped glasses and colloidal solutions [95-100] often have a spherical
shape. When the passivation of the surface is made in such a way that car-
riers are strongly confined in the nanocrystal, the system is usually correctly
described by an infinitely deep spherical well where the confining potential
is

Veont(r) =0ifr < R,
Veont (1) — 00 otherwise , (2.16)

where R is the radius of the nanocrystal. Due to the spherical symmetry of
the potential, the orbital momentum operator L commutes with the Hamilto-
nian and in EMA it is advantageous to rewrite the Schrodinger-like equation
for the envelope function ¢ in spherical coordinates:

- P (sl (*2) - Li)  Vant(1)] 007:0,9) = 26(r,0,) - 217

2m* r2

The eigenstates are products of the spherical harmonics Y}, and of radial
parts. The solutions are

R X\’
Enl 2m* ( R ) , ]-’ 27 3 3 O, ) )
o Xur
¢nlm(ra 07 <P) =A J < Rl ) lem(av ()0) 9 (218)

where j; is a spherical Bessel function which is related to a normal Bessel
function of the first kind with half integer index

() = | 3o iale). (219)

with in particular jo(z) = sin(z)/z. The coefficients X,,; are the zeros of
the spherical Bessel functions labeled by an integer n in order of increasing
energy. Some values of X,,; are given in Table 2.1 for the lowest levels defined
by n and [. The corresponding levels are shown in Fig. 2.4. The levels can
be labeled with the usual atomic notation, e.g. 1S corresponds to [ = 0 and
n = 1. Their degeneracy is also the same as in real atoms. However, we
must note that there is no restriction on the values of [ for a given n like
in free atoms where [ < n, which results from the different nature of the
potentials.
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Table 2.1. Values of X,; for the lowest states in a spherical well

nl  Level Xu

10 18 3.142
11 1P 4.493
12 1D 5.763
20 28 6.283
13 1F 6.988
21 2P 7.725

2.1.5 Electronic Structure from Bulk to Quantum Dots

In this section we present the effects of quantum confinement from a different
point of view using the empirical tight binding (ETB) method. The main
objective is to show how the electronic structure varies when going from the
bulk to quantum dots, i.e. when going from energy bands to discrete levels.
In particular, we will see that the distribution of the discrete energy levels in
quantum dots is connected to the bulk density of states. For simplicity, we
consider a linear chain of atoms, with one atom per unit cell of length a. An
atom j at position R; is described by a single s orbital |j). The Hamiltonian is
defined by two parameters, an intra-atomic term ¢ = (j|H|j) and a nearest
neighbour interaction term § = (j|H|j + 1) (8 < 0). Interactions with more
distant atoms are neglected. The eigenstates of the infinite chain are given
by the Bloch theorem:

%) = > e ) . (2.20)

The electronic structure is characterized by a single band of energy dis-
persion:

e = €5 + 20 cos(ka) . (2.21)
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Fig. 2.5. Band structure (left) of a linear chain of s orbitals and the electronic
levels for a finite chain containing 20 atoms (8 = 1 eV). Density of states for the
infinite chain (right)

Figure 2.5 presents the band structure and the corresponding density
of states which behaves like 1/1/1— (¢ —€5)2/(4532). Let us consider now
the case of a finite chain with N atoms (1 < j < N). The corresponding
eigenvalues and eigenstates can be also obtained analytically [101,102] from
the solutions of the infinite chain. For that purpose, we have just to notice
that a combination of bulk solutions which vanishes on the atom 0 and on
the atom NN + 1 is also solution of the finite chain, because the inter-atomic
couplings are restricted to first nearest neighbors. Combining |[¥) and |¥_),
we first form wave functions which always vanish on the atom 0 (setting
R() = 0):

W2y = @) —i|¥_) Zsm (kR;)|7) - (2.22)

Secondly, |#2) has a zero weight on the atom N + 1 (Ry41 = (N + 1)a)
if k = kp such as

kyRny1 =pm =k, withp=1...N. (2.23)

__ b7
(N +1a

Using the fact that [ ) is solution for the energy €, in (2.21), we obtain
that the energy levels of “the finite chain are just given by the dispersion
relation of the infinite chain at discrete values of k. Thus we deduce that the
distance between allowed energies in quantum dots strongly depends on two
parameters:

— on the size which defines the distribution of allowed & points
— on the density of states in the bulk material.

Figure 2.5 presents the energy levels for a chain containing 20 atoms: in
that particular case, the splitting between the levels is smaller near the band
edges, in agreement with the fact that the density of states of the infinite
chain diverges at the band edges (this is obviously specific to a 1D system).
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These conclusions can be generalized to other types of nanostructures, even
if the calculation of the energy levels is in general more complex than for
the linear chain where the confined states are simply given by a combination
of two states of the infinite chain. We will see in the following that in real
quantum dots the boundary conditions are quite complex due to the shape
of the surface, due to atomic surface reconstructions and due to chemical
passivations. For these reasons, the confined states are in general built from
a combination of a large number of bulk states, mainly derived from the band
under consideration, but also with a non negligible mixing with states from
other bands.

It is important to realize that the discretization of the levels occurs in any
material. But confinement effects are visible when the energy level spacing
typically exceeds kT, where T is the temperature. In a bulk metal, the Fermi
level lies in the center of a band where the density of states is usually impor-
tant. The consequence is that in metal clusters, the level spacing is small, and
at temperatures above a few kelvin, the physical properties resemble those of
a bulk metal. Thus confinement effects are observed mainly in clusters con-
taining less than hundreds of atoms [103]. In semiconductors, the Fermi level
lies between two bands, such that the band edges dominate the low-energy
optical and electrical behavior. Near the band edges, the density of states is
usually much smaller, and confinement effects remain visible even for large
clusters, sometimes containing up to millions of atoms.

If the problem of the linear chain is studied in EMA, the cosine band
dispersion is replaced by a parabolic one with the same effective mass at
k = 0. Thus, in finite chains, it is clear that in EMA the energy of the lowest
states would be almost exact in the limit of long chains compared to ETB
results because the energy dispersion is well approximated by a parabola at
low energy. But for upper levels, or even for the lowest ones in the limit of
small chains, EMA overestimates the confinement because the parabolic band
acquires too much dispersion compared to the ETB band. Thus we conclude
on a general ground that EMA (and k- p) is only exact in the limit of large
nanostructures, when the confinement energy is small, in an energy range
where the band remains parabolic.

2.2 Computational Techniques

This section is concerned with the description of methods for calculating the
electronic structure of semiconductor heterostructures and nanostructures.
Basic principles of the methods have been presented in Chap. 1. Here we
concentrate on more technical aspects of the calculations, specific to confine-
ment effects.
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2.2.1 k- p Method and Envelope Function Approximation

There exists extensive literature on how to calculate the electronic structure
of quantum confined semiconductor structures on the basis of the k-p method
and using the envelope function approximation for the eigenstates. An en-
tire book would not be sufficient to describe all the work done in this field.
Many levels of approximation have been used, from the simplest one-band
effective mass approximation (EMA) to a multiband approach [85, 86, 92], or
by simplifying the Schrédinger-like equation using approximate cylindrical
or spherical symmetry of the Hamiltonian. All these approximations are not
always completely justified, and in any case are restricted to the treatment of
a small number of problems. In this section, we present the numerical method
of G.A. Baraff and D. Gershoni [104, 105] for solving the multiband envelope
functions in 0D, 1D and 2D systems composed of different types of semicon-
ductors whose properties, e.g. alloy composition and strain, may vary. The
method assumes that these material properties only change discontinuously
across perpendicular planes. This is not a severe restriction since for problems
where a quantity varies continuously one can use a fine mesh of planes. The
technique used is Fourier-series expansion of the envelope functions.

We only consider the case of direct gap semiconductors, where the band
edges are at k = 0. The method presented here is particularly suitable to treat
III-V and II-VI semiconductor heterostructures and nanostructures made by
epitaxial techniques, such as AlGaAs/GaAs, InGaAs/GaAs or InGaAsP /InP.
In the k- p method with the envelope function approximation, the wave func-
tion in each compositionally homogeneous region of the structure is assumed
to be of the form [87]

W(”') = Z Un (’l‘)¢n(1") ) (2.24)

where the u,(r) are Bloch waves at k = 0 for the material in a particular
region. The ¢, (r) are the envelope functions, and the summation is restricted
to bands close to the gap. As shown in Sect. 1.3.3, in general, it is required to
include eight Bloch functions, two for the s-like conduction band minimum
(including spin) and six for the p-like valence band maximum. We have seen
in Sect. 2.1.1 that in one-band EMA the envelope function is solution of a
Schrédinger-like equation where the electron mass in the kinetic operator is
replaced by the effective mass m*. Generalizing this in the multiband approx-
imation, the envelope functions are now governed by eight coupled differential
equations which can be written in the general form

> Hondn(r) = €6 (r) . (2.25)

where H includes operators acting on the envelope functions. In the basis of

the cight Bloch waves [s 1), [z 1), [y 1), |2 1), |s 1), |o 1), |y ), |z 4) where

the arrows indicate the spin, the matrix H can be written as
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G T

- G (2.26)

?

-

where G and I are both 4 x 4 matrices. Following Kane [80, 81], we have

G =Gy + Gy + Gy (2.27)
where
G, =
£c + BB iPk, iPk, iPk,
—iPk, e +ZE _A/3 0 0
mo 2.2 2
—iPk, 0 ev e —A/3 0
~iPk, 0 0 ev+ 5 —A/3
(2.28)
Gy =
A2 Bhkyk, Bk,k, Bk, k,
Bkyk, L'k2+M(Kk2+k2) N'kgk, N'kgk,
Blgk., N'kgk, L'k2 + M(k2 + k2) N'k,k, ’
Bk, k, N'kk, N'kyk, L'k2 + M (K2 + k2)
(2.29)
and
0 0 00
Alo 0 i 0
Goo==F10 —i 0 0 (2.30)
0 0 0 0
The matrix I' is
00 0 0
A0 0 0 -1
F==310o0 0o i (2:31)
01 —i 0

e. and &, are the band edge energies and A is the spin orbit splitting at the
top of the valence band. The parameter P is proportional to the momentum
matrix element between |s) and |z)

.k
P= —1-m—0(3|pz|a:) , (2.32)

which also defines to the optical matrix elements between the conduction
band and the valence band (one must be careful that many definitions of the
parameter P can be found in the literature). The parameters A’, B, L', M,
and N’ are defined in [80,81] (L’ and N’ differ from L and N of the 6 x 6
Hamiltonian (1.187) which describes only the valence band). They are all
defined in terms of experimental data such as the bandgap €z = ec — &y, the
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conduction band effective mass mg, the heavy (mf, (ijk)) and light (m}, (ijk))
hole effective masses in the (ijk) direction and the split-off band effective mass
mg,, or in terms of the Luttinger [87] parameters 1, v, and 73

mo mo
m;h(l(]O) 7 Y2 mf‘h(IOO) et + Y2
mg N 9 my _ 19
m}*lh(lll) =M Y3 ml*h(lll) ="M Y3,
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In the case of strained crystals, it is possible to add extra terms in the
8 x 8 Hamiltonian using deformation potentials, i.e. terms which account for
the variation of the band edge energies associated with elastic strains [106].
It is also possible to include piezoelectric fields [107].

In the set of differential equations (2.25), the symbol k; is interpreted as
the differential operator

10
i ij '
Then one assumes that the system is periodic with periods X, Y, Z along
z, ¥, z directions respectively. The definition of these dimensions is quite
natural in the case of superlattices for example. In the case of isolated het-
erostructures and nanostructures, one must choose X, Y, Z large enough to
avoid interactions between the structures. The envelope functions which are
solutions of (2.25) are expanded in 1D, 2D or 3D Fourier series according
to whether the system has spatial variation in 1D, 2D or 3D [104, 105]. An-
other possibility is to use a finite difference method to solve the differential
equations. The system is divided into different regions which define a mesh
of perpendicular planes. The parameters of the Hamiltonian matrix are con-
stant in each region but differ from region to region. A special attention must
be given to the problem of matching envelope functions at the boundaries.
It was shown [104, 105] that (2.25) leads to an hermitic set of equations if in
every term in which a material parameter () and a derivative both appear,
one makes the replacement

k; — (2.34)
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Fig. 2.6. Isosurface plots of the charge densities of the electron ground and first
excited states just below the surface of a cleaved InAs box embedded in GaAs [108].
The InAs dot has a truncated pyramid like shape with a 20 nm [100] x [010] square
base and {110} faces
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where the spatial dependence Q(r) is written in terms of a step function ©

Q(z) = Q1 +(Qu — Q1)O(z — x0) , (2.36)

for an interface between materials I and I at £ = zo. Note that the derivative
of a step function produces a delta function which gives rise to a term in the
elements of H,,, leading to the usual condition that the normal component
of the current must be continuous across the interface [104, 105].

After expansion of the envelope functions as Fourier series, (2.25) is re-
duced to a simple eigenvalue problem, which after projection leads to a set of
linear equations whose size is equal to eight times the number of plane waves
in the series. The main advantage of the method is that complex problems
can be solved, with heterostructures and nanostructures in a wide range of
sizes (the limitations of k - p are discussed in Sect. 2.3). For example, we
show in Fig. 2.6 the lowest electron states in a cleaved InAs quantum dot
embedded in GaAs calculated including the effect of strains on the electronic
structure [108].

2.2.2 Tight Binding and Empirical Pseudopotential Methods

The empirical tight binding method (ETB) and the empirical pseudopotential
method (EPM) have been basically described in Sects. 1.3.1 and 1.3.2, respec-
tively. These methods are designed to make the best possible approximation
to the bulk semiconductor Hamiltonian in the whole Brillouin zone. They in-
volve adjustable parameters that are fitted to experimental data or ab initio
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band structures. These parameters are then transferred to the nanostructures
with appropriate boundary conditions. The better the bulk description and
boundary conditions, the better the electronic structure we expect in nanos-
tructures. In the following, we discuss how to achieve this, insisting on the
particular case of spherical Si nanocrystals with their surface passivated by
hydrogen atoms to saturate the dangling bonds.

Empirical Tight Binding. We have seen in Sect. 2.1.5 that it is important
to have a good description of the bands not only over the whole Brillouin
zone, but also near the band edges, because ETB and k - p must be equiv-
alent in large nanostructures. In Sect. 1.3.1, we have presented such a good
band structure for Si using a sp® ETB model [64] including up to third
nearest neighbor interactions and three center integrals (Table 1.1). Other
possibilities are to use a sp3d®s* model restricted to first nearest neighbor
interactions [66] or a non orthogonal ETB model [109] which give a band
structure of similar quality.

To achieve good boundary conditions, it is important to obtain the best
possible description of the surface or of the interface. In the case of Si
nanocrystals passivated by hydrogen [64], Si-H parameters have been fitted
on the SiH, experimental gap and charge transfer calculated within LDA. H
atoms are described by their 1s orbitals and Si-H parameters are restricted
to first nearest neighbor interactions (Table 1.1, Sect. 2.1.5). In the case of
interfaces between two semiconductors, e.g. GaAs/AlGaAs, one possible pro-
cedure is to fit the ETB parameters in each semiconductor separately, and
then to shift the intra-atomic energies of one semiconductor with respect to
the other in order to match the experimental band offsets. The inter-atomic
terms between the two semiconductors are then estimated using empirical
rules [110].

Empirical Pseudopotentials. The application of the EPM to band struc-
ture has been reviewed in Sect. 1.3.2. The application of EPM to semicon-
ductor nanostructures has been mainly developed by the group of A. Zunger
[76,111-117]. In the usual EPM, the pseudopotential V(G) is defined only on
the discrete bulk reciprocal lattice vectors. The description of finite quantum
dots requires a continuous form V(q). For Si, Wang and Zunger [76] used a
local pseudopotential of the form

Vsi(q) = a1(¢® — a2)/ (as exp(asg®) — 1) . (2.37)

A fit to the bulk band structure (shown in Fig. 1.8, Sect. 1.3.2), effective
masses and the work function gives a; = 0.2685, ag = 2.19, a3 = 2.06 and a4 =
0.487 in atomic units. The hydrogen pseudopotential was obtained by fitting
the local density of states of H-covered surfaces obtained from experiments
and LDA results [76]

Vir(g) = —0.1416 + 9.802 x 10™%¢ + 6.231 x 1072¢* — 1.895 x 10 2¢°
when ¢ < 2,
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Vaa(q) = 2.898 x 1072/q — 0.3877/¢% + 0.9692/¢® — 1.022/¢*
when ¢ > 2. (2.38)

The atomic positions can be obtained using ab initio calculations or using
surface relaxation models. Having determined the pseudopotentials and the
atomic coordinates R;, it remains to solve the single particle Schrodinger
equation

2
(H%OAJFZW"'_R“)) $;(r) =ei5(r) , (2.39)

where V;(|r|) is the atomic pseudopotential on the atom i. The nanostructure
wave functions are expanded in a basis of plane waves

$;(r) = Bi(G)eFT. (2.40)
G

The cutoff energy used with the pseudopotentials of Si and H is 4.5 Ryd.
The transformation between ¢;(r) on a real space grid and B;(G) on a
reciprocal space grid is done by numerical Fast Fourier Transform (FFT).

Numerical Methods to Solve Large Eigenvalue Problems. A consid-
erable advantage of empirical methods like ETB or EPM compared to ab
initio ones like LDA is that the Schrédinger equation has not to be solved
self-consistently. Thus it only remains to calculate the eigenvalues and the
eigenstates of the Hamiltonian matrix. However, even with this huge simpli-
fication, the size of the matrix directly scales with the number N of atoms
in the system and one is rapidly facing computational limits. For example,
in EPM, the description of a nanocrystal containing 1315 Si atoms and 460
H atoms requires 100 x 100 x 100 real space FFT grid points [76]. In ETB,
with a sp® basis for Si and s for H, the size of the matrix is 5720 if spin—
orbit coupling is omitted, and is doubled otherwise. Even if the size of the
problem in ETB is much smaller than in EPM, in both cases, direct diago-
nalization or conventional variational minimization methods based on (2.39)
are impractical [118], mainly because one is forced to calculate all occupied
eigenstates starting from the lowest one (they usually scale as N3). Thus
other approaches are required to solve these large eigenvalue problems.

In ETB, when the shape of the quantum dot is relatively simple (e.g.
spheres or cubes), it is often possible to work in the irreducible representa-
tions of the point group which characterizes the symmetry of the system.
According to Wigner’s theorem, this leads to a block-diagonal Hamiltonian.
Each block can be diagonalized separately, and the eigenstates of degenerate
representations can be deduced using simple symmetry operations. In the
best cases, one can gain a factor up to ten on the size of the largest matrix
to diagonalize.

Another considerable simplification is that in many cases we are interested
only in the highest occupied and in the lowest unoccupied states, around the
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gap. A few states near the gap can be calculated using a block Lanczos algo-
rithm [119,120] on (H — oI)™", or a conjugate gradients algorithm [118] on
(H — oI)? (folded spectrum method [76]). The folding energy o is set in the
gap just above the bulk valence band maximum or below the bulk conduc-
tion band minimum to directly catch the highest valence or lowest conduction
states. In ETB, Jacobi (diagonal) or incomplete Cholesky factorizations [119]
(LLT) of (H—01)? can be used as pre-conditioners for the conjugate gradients
[64]. In the latter case, the incomplete Cholesky factorization is performed
on the part of (H — oI)? having the sparsity pattern of H. Although crude,
this pre-conditioner can save up to 75% of the iterations needed to reach
convergence depending on the problem. In EPM, preconditioning of the con-
jugate gradient scheme is described in [121]. Using these methods, EPM can
be applied to quantum dots up to a size of 4 nm, and ETB up to 15 nm.

In the case of large semiconductor nanostructures (size 2 10 nm) embed-
ded in another semiconductor, when the two materials (I, II) have relatively
close properties (e.g., InAs quantum dot in GaAs), it is possible to develop
the nanostructure wave functions in the basis of bulk states ug, . (r) where n
denotes the band, k the wave vector and « the material (T or IT). The number
of bulk states required for the convergence may be actually quite small, al-
lowing to treat large systems containing millions of atoms. This method has
been mainly designed for EPM calculations [122], but it can be used similarly
in ETB.

2.2.3 Density Functional Theory

Only a small number of LDA calculations have been applied to the electronic
properties of nanostructures, mainly to Si wires and quantum dots. The main
limitation is the computation time which increases rapidly with the number
of atoms. Typically, LDA calculations using plane wave basis are limited to
a maximum of 50 atoms [123-126], and more recently to 363 atoms using
soft pseudopotentials and improved algorithms [127]. Using a basis of atomic
orbitals more adapted to finite systems and using clusters with high symme-
try, it is possible to treat up to 1000 atoms [128] (more elaborate treatments
which include self-energy corrections and excitonic effects will be discussed
in Chap. 4).

Another problem in LDA is that the bandgap of bulk semiconductors
is underestimated, because LDA — and DFT in general — is not applicable
to the calculation of excited states (Sect. 1.2). However, optical spectra of
bulk semiconductors are improved in LDA if a rigid shift is applied to the
conduction states with respect to the valence ones to get the correct gap.
Thus, a common approximation is to apply the same shift to the LDA gap
of nanostructures. Justifications of this empirical procedure are discussed in
Chap. 4.
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2.3 Comparison Between Different Methods

The most widely used techniques to calculate the electronic levels in nanos-
tructures are the EMA and its extension the multiband k - p method. They
have been particularly successful in the case of heterostructrures [86,92]. Re-
markable results have also been obtained in describing the absorption [129],
hole burning [130] and photoluminescence excitation spectra [131] in CdSe
nanocrystals. However, it is well-kown that k- p has intrinsic limitations [112-
114] which we analyze in this section. We also compare the predictions of the
different methods to calculate quantum confinement energies.

We consider the case of Si quantum dots but conclusions can be gener-
alized to other semiconductors. We first compare ETB and k - p results for
spherical and cubic Si dots presented in Fig. 2.7. The energy of the highest
occupied state and lowest unoccupied state are plotted versus the effective
diameter d of the dot, which for a cube is the diameter of the sphere with
the same volume. The ETB sp® model [64] applied here is described in Sect.
1.3.1: it includes up to third nearest neighbor interactions and three center
integrals (Table 1.1). Spin—orbit coupling is taken into account. Since Si has
an indirect bandgap, we assume in k - p uncoupled valence band maximum
and conduction band minima. The valence band is described with a six band
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k - p model (Dresselhaus-Kip-Kittel Hamiltonian [83]) taking into account
the large valence band anisotropy of Si and spin—orbit coupling. The input
parameters are the three Luttinger parameters 1, 2, v3, and spin—orbit split-
ting A. The six conduction band minima along I'X directions are assumed
uncoupled and are described in single band EMA. The input parameters are
the longitudinal and transverse effective masses m; and m{, and the bulk
bandgap energy e4(00). Because k - p is not an atomistic description, there
is no thorough way to provide a potential consistent with ETB boundary
conditions. Thus an infinite barrier is assumed in k - p calculations, and its
position is chosen in such a way that the volume of the system is equal to
the total volume occupied by the Si atoms.

For consistent comparison, the Luttinger parameters and conduction band
effective masses are deduced from the ETB band structure, even if they are
very close to experimental ones as discussed in Sect. 1.3.1. The k - p and
ETB valence bands of bulk Si are shown in Fig. 2.8. In k - p the valence
bands tend to acquire too much dispersion because they miss couplings with
other states which are not included in the model [114]. The mean difference
between ETB and k - p valence bands is less than 10% in a ~ 250 meV
range. In the same way, the conduction band acquires too much dispersion
compared to ETB, especially in the transverse directions (not shown). The
mean difference between ETB and EMA conduction bands is less than 10%
in a ~ 200 meV range.

There is striking evidence for over-confinement of k - p compared to ETB
in Fig. 2.7. As shown in [64], k - p predictions obviously get worse from films
(2D) to wires (1D) and dots (0D). In spherical Si dots, the error on the
confinement energy eg(d) — €,(00) is larger than 25% for d < 8.5 nm, and
50% for d < 4.5 nm. It is still 15% for d ~ 12 nm. The use of a multiband
semi-empirical method such as ETB or EPM is therefore recommended in
the 5-12 nm range for Si clusters. Indeed, the sp® ETB model is not more
difficult to solve than the six band k - p model in this range, when valence
band anisotropy and spin—orbit coupling are taken into account.

F7TE

Energy (eV)

-1.5

1/3'L I 13rx r 1/3TK

Fig. 2.8. Bulk Si valence band structure within six band k - p (dashed line) and
ETB models (straight line). ETB Luttinger parameters are used for consistent com-
parison
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There are basically three reasons why k - p overestimates confinement
energies with respect to ETB. The main reason is that in k - p valence bands
and conduction bands tend to acquire too much dispersion far from the edges
(Fig. 2.8). Over-confinement gets worse in small nanostructures that couple
Bloch states far from the extrema, and for higher excited states. For example,
we present in Fig. 2.9 the projection of the three lowest electron states of Ay
symmetry in a spherical Si dot of diameter d = 4.89 nm. The confinement
of the wave functions in real space leads to a spread of their projection in
momentum space. In Fig. 2.9, the width of the main peak for the lowest
state is proportional to 1/d and extends over the whole Brillouin zone in the
smallest nanostructures. Higher excited states, that have nodal planes in the
wavefunction, thus exhibit multiple peaks that extend further in reciprocal
space, beyond the range of validity of k- p and EMA descriptions of the bulk
dispersion curves.

The next reason is the coupling between bulk bands in nanostructures
[114]. Indeed, k - p assumes that hole states can be decomposed on the six
highest bulk valence bands. ETB calculations show that the hole states have
non zero projections on other bands, in particular on conduction bands [64].
Interband coupling increases with decreasing nanostructure size.

The last reason is the lack of correct boundary conditions in k - p. ETB
calculations show [64] that electron and hole states may be partly delocalized
over hydrogen atoms in small dots. Therefore, hydrogen atoms will contribute
to the confinement energy.

We now proceed to the comparison between ETB, EPM and LDA
techniques concerning the prediction of the bandgap e,(d) versus size d
(Fig. 2.10). ETB [64], EPM [76] and LDA [128] results for Si are in very
good agreement. Note that LDA values include a rigid shift of 0.6 eV since
it is known that LDA underestimates the bulk bandgap by this amount.
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Similar agreement is obtained between ETB, EPM and corrected LDA in
other semiconductors [132-134]. However, one can wonder why semi-empirical
techniques should provide quantitative estimates of e4(d) [135]. This ques-
tion is of primary importance since there exist other ETB calculations for Si
nanocrystals which provide significantly lower values for the gap [136, 137].
The basic point is that semi-empirical calculations are based on the postu-
late of transferability of the parameters from the known bulk band structure
to the unknown nanostructure case. Thus, an essential criterion by which a
particular semi-empirical model can be judged is how well it describes the
bulk band structure. In this regard ETB and EPM models of [64, 76] both
give extremely good fits to the Si band structure. On the contrary, the sp3s*
model of [136,137] gives in comparison a very poor description of the con-
duction band which is much too flat, and consequently must underestimate
the bandgap, as indeed it does.

A second criterion for validity of semi-empirical techniques is that bound-
ary conditions must be correctly simulated in the model. In ETB [64] and
EPM [76], the surfaces of the Si nanocrystals are passivated by hydrogen
atoms described by appropriate parameters fitted on experimental data or
on LDA calculations. This procedure is justified by the agreement with the
gaps calculated in LDA since the LDA Hamiltonian plus a rigid shift of 0.6
eV of the conduction states with respect to the valence states gives a quite
accurate representation of the bulk Hamiltonian and also of the Si-H termi-
nations.

2.4 Energy Gap of Semiconductor Nanocrystals

The variation with the diameter d of the energy of the lowest unoccupied
state and of the highest occupied state in Si spherical nanocrystals shown in
Fig. 2.7 can be well fitted by the following expressions:
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1
4y + byd + ¢y

1
gc(d) = ec(o0) + c BT hdre
where £, (00) and e.(00) are the bulk band edges and ac, b, cc, av, by, ¢, are
fitting parameters given in Table 2.2. The mean deviation between the curves
and the calculated points is less than 1%. In the limit of large diameters d,
the expressions (2.41) behave like 1/d? as predicted in EMA or k - p so that
they can be considered as valid over the whole range of sizes.

We have performed similar ETB calculations for spherical nanocrystals
made in series of ITI-V and II-VI semiconductors. The variation of the band
edges versus size has been also fitted with expressions (2.41) and the cor-
responding parameters are given in Table 2.2. We have considered that the
passivation of the surfaces is such that surface states do not play a role in the
confinement energy for nanocrystal with a diameter larger than 2 nm. Thus
each dangling bond at the surface is passivated by a pseudo hydrogen atom
which repels surface states far from the band edges (for details see [134]).

Comparisons between predicted confinement energies and experimental
results are made in [132,134,139], and in Sect. 4.5.3 for Si nanocrystals.

ev(d) = ey(0)

I

: (2.41)

Table 2.2. Fits to the energy (eV) of the highest occupied state (HOS) and of the
lowest unoccupied state (LUS) in various semiconductor nanocrystals with diameter
d (nm) (spd®s* ETB model except " : sp® ETB model). All semiconductors have
a zinc—blende structure, except CdSe and ZnO which have a wurtzite structure

HOS (Valence band) LUS (Conduction band) AE,

Compound ay by Cy ac be Ce (d =2 nm)
Si[134] 0.15001 0.54779 0.07477 0.20321 0.05673 0.17815  1.463
Sif[64] 0.16041 0.54395 0.22650 0.17110 0.21798 0.15485  1.295
Ge[134] 0.06996 0.55904 0.07485 0.08368 0.18568 0.22206  1.754

Gel[132] 0.06603 0.42691 0.16812 0.08429 0.20154 0.35840  1.689
AlP[134] 0.20639 0.61983 0.08272 0.25820 0.00192 0.23835  1.244
GaP[134] 0.18845 0.64973 0.07095 0.33262 —0.11812 0.36669  1.147
InP[134] 0.16151 0.65387 0.05416 0.04535 0.23340 0.20816  1.674
AlAs[134]  0.17888 0.51807 0.14764 0.24507 —0.01397 0.26441  1.341
GaAs[134] 0.12307 0.55643 0.10362 0.03946 0.22988 0.21366  1.796
InAs[134]  0.10558 0.67644 0.04419 0.01351 0.23309 0.12564  2.101
InAs'[138] 0.12553 0.65139 0.00829 0.01078 0.24406 0.22099  1.881
AlISb[134]  0.12912 0.89943 —0.06633 0.24907 —0.08260 0.30550  1.297
GaSb{134] 0.08017 0.63268 0.07146 0.02650 0.33745 0.09540  1.747
InSb[134]  0.08177 0.74084 0.01190 0.00754 0.19792 0.13959  2.329
CdSe'[139] 0.22573 0.63567 —0.13567 0.08292 0.20721 0.33300  1.417
ZnO'[140]  0.69299 —0.11936 0.30721 0.13745 0.28596 —0.06061  1.294
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Results for InAs nanocrystals are discussed in detail in Sect. 4.6.1, showing a
good agreement between theory and experiments over a wide range of sizes.

2.5 Confined States in Semiconductor Nanocrystals

In this section, we briefly discuss the nature of the electron and holes states
in nanocrystals.

2.5.1 Electron States in Direct Gap Semiconductors

We begin with the simplest case of electron states in semiconductors charac-
terized by a single conduction band minimum at k = 0, such as in most III-V
and II-VI semiconductors. We plot in Fig. 2.11 the evolution of the lowest
levels in spherical ZnO clusters with wurtzite lattice structure. The energies
have been calculated in sp3d®s* tight binding including spin—orbit coupling
[140]. The lowest levels are grouped into multiplets which correspond to the
1S, 1P, 1D, 2S and 1F states predicted in EMA for the infinite spherical
well (Sect. 2.1.4). The multiplicity and the ordering of the levels is the same
as in EMA, but the confinement energies are overestimated in EMA for the
reasons discussed before. The small energy splittings within each multiplet
come from the spin—orbit coupling and from the fact that the symmetry of
the system is not spherical since it must be compatible with the symmetry
of the lattice of the ZnO crystal.
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Fig. 2.11. Energy of the lowest states in the conduction band of ZnO spherical
clusters. The zero of energy corresponds to the bottom of the bulk ZnO conduction
band. The lines are analytical fits of the 1S, 1P, 1D, 2S and 1F levels in order of
increasing energy using the expression (2.41) with ais = 0.137447, bis = 0.285964,
c1s = —0.0606154, a;p = 0.0685045, bip = 0.145631, cip = 0.00965402, aip =
0.0464297, bip = 0.0741516, c1p = 0.0572599, azs = 0.0373006, bas = 0.0722844,
cos = 0.05072, a1r = 0.030477, bir = 0.06066759 and ci1r = 0.0582783
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Fig. 2.12. Electron density for s (1S.), p (1Pe) and d (1De) conduction states in
an InAs nanocrystal of diameter d = 6.4 nm. The white dots represent In or As
atoms, black dots pseudo-hydrogen atoms

Similar results are obtained in other semiconductors [138,141,142]. The
identification of the states is confirmed by plotting the density of probability
(i.e. the square of the wave function), as shown in Fig. 2.12 for a 6.4 nm
InAs quantum dot. The orbitals are close to their EMA counterparts with
angular components given by the spherical harmonics Y},,, in particular for
the lowest states. For levels higher in energy, it becomes difficult to identify
the nature of the wave functions due to mixing between almost degenerate
states.

2.5.2 Electron States in Indirect Gap Semiconductors

The situation for electrons in indirect gap semiconductors like Si is more com-
plex, due to the multiplicity of the conduction band minima. In the following,
we consider Si crystallites bounded by (100) equivalent planes of dimensions
L.LyL, but similar results are obtained for spherical shapes. We first de-
scribe qualitatively the system in EMA and then we substantiate the results
using sp? tight binding calculations [144].

In a cubic quantum dot made of a direct gap semiconductor with a single
conduction band minimum (Fig. 2.13), the lowest confined state is non de-
generate (S-like) and the next higher state is threefold degenerate (P-like).
In Si, the conduction band is characterized by six equivalent (100) valleys at
wave vectors ko, (I € {z,%,y,7, 2,2} and |ko| = ko = 0.85(27/a) where a is
the bulk lattice parameter,  stands for the (100) valley and Z for the (—100)
valley) and by anisotropic effective masses (transverse mass my = 0.19 my,
longitudinal one m; = 0.92 my). The quantum confinement gives S, P states
in each valley [64]. The confined states arising from the valley I are denoted
(ngnyn,); where n; are integer quantum numbers (> 1). The confinement
energy for states in valley x or Z is
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